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morph images and under subdirect products. In the article we have obtained properties of 
ωF -covering subgroups of a finite group G 

where F  is an -local formation of finite groups. 

Keywords: finite group, 
ωF -covering subgroup, 

ωF -projector, class of groups, -local formation. 

 
Introduction. We deal only with finite groups. A set of 
groups is called a class of groups if with its group G this 
class contains every group which is isomorphic to the 
group G. For the class of groups F  Gaschutz defined an F
-covering subgroup of the solvable group G [5] and an F -
projector of G [6]. These concepts were the natural exten-
sion of the concepts of Hall and Carter subgroups, namely, 

in a solvable group G the set of all 
π

E -covering (N -cov-

ering) subgroups coincide with the set of all its -Hall 

(nilpotent) subgroups where 
π

E  (N ) is the class of all -

groups (the class of all nilpotent groups). We note that in 

the universe S  of all solvable groups the concepts of an F
-covering subgroup and of an F -projector coincide.  

Among classes of finite groups the central place belongs 
to formations which was introduced by Gaschutz in [5]. A 
class of groups is called a formation if it is closed under 
homomorph images and under subdirect products. Gas-
chutz using function methods formed local formations and 
proved the existence and conjugacy of F -covering sub-
groups in a solvable group G for the class F  which is a 
local formation [5]. Another important properties of F -
covering subgroups and F -projectors of groups for the lo-
cal formation F  were obtained by Carter, Hawkes, Doerk, 
Huppert, L.A. Shemetkov, A.F. Shmigirev, Shmid, V.A. 
Vedernikov, S.F. Kamornikov and others (see [2, 7-9, 12, 
14, 16, 18], for instance). Schunck in [13] proved that every 
local (saturated) formation is a primitively closed homo-
morph. Properties of F -covering subgroups and F -projec-
tors of groups for the primitively closed homomorph F  are 
studied in [3, 4, 13] and others. 

The natural generalization of the concept of a local for-

mation is the concept of an -local formation introduced 

by L.A. Shemetkov in [15] where  is a non-empty set of 

primes. In the article [20] ωF -covering subgroups and ωF
-projectors of groups were introduced for a non-empty 
class of groups F  and their crucial properties were ob-
tained (existence, conjugacy, embedding and others) for 

the class F  which is an -local formation or an -primi-
tively closed homomorph. This work continues the inves-

tigations in this direction. For an -local formation F  we 
have established the conditions under which an F -sub-

group of a group G is contained only in one its ωF -cover-
ing subgroup (Theorem 1). As corollaries these theorems 
imply the result of Carter, Hawkes on F -covering sub-
groups and F -projectors. Theorem proofs use classical 

methods of the theory of groups, as well as methods of the 
theory of classes of finite groups. 

Denote characterization of the class F  by (F ), i.e. (

F ) is a set of all primes p such that there exists a non-iden-

tity p-group in F  (see [11], for instance); (F ) = 
GF

(G). A class F  is called closed under homomorph images, 
or briefly, homomorph if G F  and N G imply that G/N

 F . A homomorph F  is called a formation, if F  is closed 
under subdirect products, i.e. G/A  F  and G/B  F  im-
ply that G/(A B)  F . A class F  is called closed under 

normal subgroups, or briefly, normal hereditary if G  F  

and N G imply that N  .F  A normal hereditary class F  

is called a Fitting class if F  is closed under products of 
normal F -subgroups, i.e. G  =  AB where A G, B G, 
A, B  F  imply that G  F . A class F  is called a Fitting 
formation if F  is a formation and F  is a Fitting class.  

Let F  be a non-empty Fitting formation. Then G
F

 and 

G F
 are respectively an F -coradical of the group G (i.e. it 

is the smallest normal subgroup of G quotient on which be-
longs to F ) and an F -radical of G (i.e. the largest normal 
subgroup of G belonging to F ) (see [2, 14], for instance). 

Henceforth  stands for a non-empty subset of the set P of 

all primes; 
ω
F  is a set of all -groups belonging to a class 

F ; 
ω

O (G)  is an 
ω

E -radical of a group G where E  is a 

class of all finite groups. Let f :  {'}→{formations 

of groups} where f(')=  , h: P →{formations of 

groups}, : P →{non-empty Fitting formations} are func-

tions which are called respectively an F-function, an PF-
function and an PFR-function. A formation F  = (G: G/

ω
G / O (G)   f(') and G/

δ(p)
G  f(p) for any p

(G)) is called -fibered with the -satellite f and with the 

direction ; a formation H = (G: G/
δ(p)

G  h(p) for any p

(G)) is called fibered with the satellite h and with the 

direction  [19]. A fibered (-fibered) formation with the 

direction  is called local (-local) if (p) = 
p

E
p

N  for 
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Abstract. Only finite groups and classes of finite groups are considered. Let  be a non-empty set of primes and F  be a non-empty 

class of finite groups. A subgroup H of a group G is called an F-covering subgroup if H F  and the property that H   U   G, V 

is a normal -subgroup of U with U/V  F  implies that U = HV. A class of groups is called a formation if it is closed under homo-

Preliminary Information. Used definitions and nota-
tions for groups are standard (see [2, 10, 11], for in-
stance). Let us give only some notations and definitions. 
A note A := B means that the equality A=B is true by the 
definition. 
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every pP,  where 
p

E
p

N  is the class of all finite p-nilpo-

tent groups.  

Remark 1. Every local formation is -local for any . 

If (F )    then an -local formation F  is local (see 

corollaries 3.2 and 4.2 [19], for instance). A class F  is 

called saturated (-saturated) if for any N G such that N

Ф(G) (respectively NФ(G)
ω

O (G) ) the following 

property is fulfilled: G/N  F  implies that G F  (see [2, 
17], for instance).  

Remark 2. According to Gaschutz-Lubezeder-Shmidt 
Theorem, a non-empty formation is saturated if and only if 
it is local (see Theorem IV, 4.6 [2]). A.N. Skiba and L.A. 
Shemetkov established equivalency of the concepts of an 

-saturated and an -local formations (Theorem 1 [17]). 
Let F  and X  are non-empty classes of groups, F  X

. The class F  is called  primitively closed in ,X   or briefly, 

P-closed in X  if for any group G X : G/
G
(M)Core  F  

for every M G implies that G F  (see [2], for instance). 

A class F  is called -primitively closed in X , or briefly, 

P-closed in X  if for any group G :X   G/
G
(M)Core

ω
O (G)   F  for every M G implies that G F  (Defi-

nition 2.5 [20]). A class F  is called P-closed (P-closed) 

if F  is P-closed (P-closed) in E . 
Remark 3. According to Lemma 2.2 [20], every P-

closed in X  homomorph is P-closed in X  for any . If  

= (F ) then P-closed in X  class is P-closed in X  (Re-
mark 2.3 [20]). In the article [20] it has been established 

that a non-empty formation F  is P-closed if and only if it 

is -saturated (see Lemma 2.4 [20]).  
Let F  be a non-empty class of groups. A subgroup H of 

a group G is called an ωF -covering subgroup of G if H  

F  and the property HUG, V is a normal -subgroup 
of U with U/V  F  implies that U = HV (Definition 3.2 

[20]). A subgroup H of a group G is called an ωF -projector 

of G if for every normal -subgroup N of G a subgroup 
HN/N is an F -maximal subgroup of G/N (Definition 3.1 
[20]).  

Remark 4. Every F -covering subgroup (F -projector) 

of the group G is its an ωF -covering subgroup (an ωF -pro-

jector) of G for any . If  = (G) then an ωF -covering 

subgroup (an ωF -projector) of G is an F -covering sub-
group (an F -projector) of G (Remarks 3.1 and 3.2 [20]).  

Let F  be a non-empty formation. A normal subgroup R 

of a group G is called an ωF -limit subgroup of G if R
GF

 and R/(R Ф(G)
ω

O (G) ) is a chief factor of the 

group G. A maximal subgroup M of a group G is called ωF
-critical in G if G = MR for an ωF -limit subgroup R of G. 

An F -subgroup H of a group G is called an ωF -normalizer 

of G if there exists a chain H = 
t

H 
t-1

H   … 
1

H 

0
H = G where t  0 such that 

i
H  is an ωF -critical sub-

group of 
i-1

H  for every i {1, 2, …, t} (Definition 3.1 

[21]). 

Lemma 1 (Theorem 2 [22]). Assume that F  is an -

local formation, an F -coradical G
F

 of a group G is a (F

)-selected -group. Then the group G has at least one ωF -

covering subgroup ( ωF -projector) and any two ωF -cover-

ing subgroups (any two ωF -projectors) of G are conjugate 
in G. 

Lemma 2 (Theorem 3.4 [20]). Assume that X  is a he-

reditary homomorph, F  is a non-empty P-closed in X  

homomorph, G X  and N is a nilpotent normal -sub-
group of G. If H is an F -subgroup of G such that G = HN 

then H is contained into an ωF -covering subgroup of G. 
Particularly, if H is an F -maximal subgroup of G then H is 

an ωF -covering subgroup of G. 
Lemma 3 (Lemma 3.4 [20]). Let F  be a homomorph 

and G be a group. Then the following statements are true: 

(1) If H is an ωF -projector of the group G and H  G 

then H is an ωF -covering subgroup of G; 

(2) If H is an ωF -covering subgroup of G and HK
G then H is an ωF -covering subgroup of K; 

(3) If H is an ωF -covering subgroup of G and N is a 

normal -subgroup of G then HN/N is an 
ωF -covering subgroup of G/N; 

(4) If N is a normal -subgroup of G and H/N is an ωF
-covering subgroup of G/N then every  

ωF -covering subgroup of H is an ωF -covering subgroup 
of G. 

under which an F -subgroup H of a group G is contained 

into some its ωF -covering subgroup. In the following the-
orem we obtain conditions under which H is contained only 

into one ωF -covering subgroup of the group G. 

Theorem 1. Assume that F  is an -local formation, G 

is a group, N is a nilpotent normal -subgroup of the 
group G, H is an F -subgroup of G such that G = HN. If N
 F then the following statements are true: 

(1) A normalizer 
G

N (H)  is contained into a ωF -cover-

ing subgroup of the group G; 

(2) H is contained only into one ωF -covering subgroup 
of G. 

Proof. Assume that N  F . Prove the statement (1). In-

duct on the order of the group G. If G  F  then G is an ωF
-covering subgroup of G and the statement (1) is true. Sup-

pose that G F . Then from G = HN we infer that N = 1. 

Assume that K is a minimal normal subgroup of the group 

G contained into N. Then K is a nilpotent -group. Show 
that a quotient G/K satisfies the hypotheses of the theorem. 
Indeed since F  is a formation and H F  then HK/K F . 
Moreover, G / K = HK/K N/K and N/K is a nilpotent nor-

mal -subgroup of G/K. Since |G/K|<|G| then by induction 

G/K
N (HK / K)    L/K where L/K is an ωF -covering 

subgroup of the group G/K. From 
G

N (H) K/K   

G/K
N (HK / K)  it follows that 

G
N (H) L. 

Since, according to Remarks 2 and 3, the formation F  

is an P-closed homomorph in E  then by Lemma 2 we 

infer that HT where T is an ωF -covering subgroup of 

the group G. Then by Lemma 3 (3) a quotient TK/K is an 
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ωF -covering subgroup of G/K. From G/N = HN/N   H/H

N  F  we infer that G
F

 N and, hence, G
F

 is a nilpo-

tent -group. Since Lemma 1.2 (1) [14] implies that 

(G / K)F  = G
F

K/K. Consequently, (G / K)F  is nilpotent 

and, so, (G / K)F  is a (F )-selected -group. Then by 

Lemma 1 L/K and TK/K are conjugate in G/K. Therefore, 

there exists an element xG such that L/K = 
xK(TK / K)  

From this we conclude that L = 
1

T K where 
1

T := 
xT . 

Lemma 1 yields that a subgroup 
1

T  is an ωF -covering sub-

group of G and by Lemma 3 (2) 
1

T  is an ωF -covering sub-

group of the group L. 

1. Consider the case L = G. Since H   N_{G}(H)   

L then L = L G = L HN = H (L N). Since L N is a 

nilpotent normal -subgroup of the group L then by induc-

tion we infer that 
L

N (H)    R where R is an ωF -covering 

subgroup of the group L. Since L/K = 
1

T K/K   
1

T /
1

T

K  F  then LF    K and, therefore, LF  is a nilpotent 

-group. According to Lemma 1, R and 
1

T  are conjugate 

in L. Thus, R = 
y

1
T  for some yL. Since 

1
T  is an ωF -

covering subgroup of G then by Lemma 1 R is an ωF -cov-

ering subgroup of G. The inclusion 
G

N (H)    L implies 

that 
G

N (H)  = 
G

N (H) L = 
L

N (H)  and, hence, 
G

N (H)  

R. Thus, if L =  G then 
G

N (H)  is contained into the 

ωF -covering subgroup R of G. 

2. Suppose that L = G. Verify that 
1

N G where 
1

N  

:= 
1

T N. Indeed, since N is a nilpotent normal subgroup 

of G and K   K/1 is a chief factor of G then Corollary 

4.1.1 [14] yields N   F(G)   
G

C (K)  and, therefore, K 

  
G

N (N )
1

. Since 
1

N
1

T  then G = 
1

T K   

G
N (N )

1
 and, hence, 

1
N  G.  

2.1. Assume that 
1

N  =  1. Since G/
1

N  = H
1

N /
1

N

N/
1

N  and N/
1

N  is a nilpotent normal -subgroup of 

the group G/
1

N  then by induction we infer that 

G/N
N (HN / N )

1 1 1
   S/

1
N  where S/

1
N  is an ωF -cov-

ering subgroup of G/
1

N . Since 
G

N (H)
1

N /
1

N    

G/N
N (HN / N )

1 1 1
 then it follows that 

G
N (H)    S. 

Lemma 3 (3) implies that the subgroup 
1

T /
1

N  is an ωF -

covering subgroup of G/
1

N . By Lemma 1.2 (1) [14] 

(G / N
1
)F   is a nilpotent -group. Then, according 

Lemma 1, we infer that 
1

T /
1

N  and S/
1

N  are conjugate 

in G / N
1

. Hence, (
1

T / 1
aN

1
N )  = S/

1
N  for some ele-

ment aG. Consequently, 
a

1
T  = S and Lemma 1 implies 

that S is an ωF -covering subgroup of G. Apart from that, 

as we have shown above, 
G

N (H)  is contained into S.  

2.2. Suppose that 
1

N  = 1. In this case prove that N = 

K. Indeed, since K   N and 
1

T N = 1 then 
1

T K = 1. 

Therefore, G = L = 
1

T [K]. On the other hand, G = 
1

T [N]. 

Thus, N = K and from G = HN we infer that G = HK. Then 

G = 
xH K. The equalities 

xH    
xT  = 

1
T  and 

1
T K 

= 1 imply that G = 
xH [K]. Then 

xH  G and by Lemma 

3.17 (2) [11] we infer that H G. Since G F  then H is 

an F -maximal subgroup of G and, according Lemma 2, it 

follows that H is an ωF -covering subgroup of G. If 

G
N (H)  =  H then 

G
N (H)  = G. Consequently, x

G
N (H )  

= x

G
(N (H))  = G and, hence, 

xH G. From this we con-

clude that G = 
xH   K. Since 

xH   F , K  N    F  

and F  is a formation then G  F  which is contradiction. 

Thus, 
G

N (H)  = H. The statement (1) is proved. 

Prove the statement (2). Induct by the order of G. As 

above, we can assume that G F  and N= 1. Suppose that 

K is a minimal normal subgroup of the group G such that 

KN. By Lemma 2 H is contained into an ωF -covering 

subgroup of G. Put M := {
1

T , … , 
m

T } is a set of all ωF

-covering subgroups of the group G containing H. Show 
that |M| = 1.  

Assume that i, j{1, 2, …, m}, i= j. Since 
i

T  and 
j

T  

are ωF -covering subgroups of the group G containing H, 

and K is a normal -subgroup of G, Lemma 3 (3) implies 

that 
i

T K/K and 
j

T K/K are ωF -covering subgroups of the 

group G/K, and, furthermore, HK/K   
i

T K/K and HK/K 

  
j

T K/K. Since the group G/K satisfies the hypotheses 

then by induction we infer that 
i

T K/K = 
j

T K/K and, 

hence, 
i

T K = 
j

T K := D.  

a) Consider the case D =  G. By Lemma 3 (2) subgroups 

i
T  and 

j
T  are ωF -covering subgroups of the group D con-

taining H. Moreover, D = G D = HN D = H (N D) 

and N D is a nilpotent normal -subgroup of the group 

D. Then by induction we have 
i

T  = 
j

T  and, therefore, in 

this case we conclude that |M| = 1.  

b) Assume that D = G. If 
i

T K =  1 then from that a 

subgroup 
i

T K is normal in G and K is a minimal normal 

subgroup of G it follows that 
i

T K = K. Then K   
i

T  

and G = 
i

T K = 
i

T . Thus, in this case we have 
i

T  = G = 

j
T . If 

j
T K =  1 then we obtain the same conclusion. 

Suppose that 
i

T K = 1 = 
j

T K. Then G = 
i

T [K] = 

j
T [K] and, hence, 

i
T  G, 

j
T  G. By Lemma 1 
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subgroups 
i

T  and 
j

T  are conjugate in G. Therefore, 
k

i
T  

= 
j

T  for some kK. Since HK
i

T = H (K
i

T ) = H 

and HK
j

T  = H(K
j

T ) = H then 
kH = (HK

k

i
T )  

  
k(HK)

k

i
T  = HK

j
T  = H. Consequently, k  

G
N (H) . By the statement (1) of this theorem we infer that 

G
N (H)    T where T is an ωF -covering subgroup of G. 

Hence, k  T. Thus, we have established that for any i, j 

{1, 2, …, m} the following equality is true 
k

i
T  = 

j
T  

where k  T. Since H   
G

N (H)  then T  M and, there-

fore, T = 
s

T  for some s where 1 sm. Assume that r 

{1,2,…,m}. Since 
r

T , 
s

T   M then, by proved above, 

we infer that 
s

(T l)  = 
r

T  where l T = 
s

T . Conse-

quently, 
r

T  = T for any r  {1, 2, …, m}. Thus, we con-

clude that |M| = 1. The statement (2) is proved. The theo-
rem is proved. 
Conclusion. In view of Remarks 1 and 4, Theorem 1 di-
rectly implies the following well-known result for local 
formations. 

Corollary 1.1 (Carter, Hawkes, Theorems 5.8 and 5.9 
[1], see also Theorem 15.9 [14]). Assume that F  is a local 
formation, G is a group with the nilpotent F -coradical. Let 
H be an F -subgroup of G such that G = HF(G). If N    

F  then the following statements are true:  

(1) 
G

N (H)  is contained into an F -covering subgroup 

of G;  
(2) H is contained only into one F -covering subgroup 

of G. 
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