Science and Education a New Dimension. Natural and Technical Sciences, IX(33), Issue: 262, 2021 Dec. www.seanewdim.com The journal is published under Creative Commons Attribution License v4.0 CC BY 4.0

The F^o-covering Subgroups of Finite Groups

M. M. Sorokina, D. G. Novikova

Bryansk State University named after Acadimition I.G. Petrovsky, Bryansk, Russia *Corresponding author. E-mail: mmsorokina@yandex.ru

Paper received 01.12.21; Accepted for publication 16.12.21.

https://doi.org/10.31174/SEND-NT2021-262IX33-05

Abstract. Only finite groups and classes of finite groups are considered. Let ω be a non-empty set of primes and \mathbf{F} be a non-empty class of finite groups. A subgroup H of a group G is called an F^{ω}-covering subgroup if $H \in \mathbf{F}$ and the property that $H \leq U \leq G$, V is a normal ω -subgroup of U with $U/V \in \mathbf{F}$ implies that U = HV. A class of groups is called a formation if it is closed under homomorph images and under subdirect products. In the article we have obtained properties of \mathbf{F}^{ω} -covering subgroups of a finite group G where \mathbf{F} is an ω -local formation of finite groups.

Keywords: finite group, \mathbf{F}^{ω} -covering subgroup, \mathbf{F}^{ω} -projector, class of groups, ω -local formation.

Introduction. We deal only with finite groups. A set of groups is called a class of groups if with its group G this class contains every group which is isomorphic to the group G. For the class of groups **F** Gaschutz defined an **F** -covering subgroup of the solvable group G [5] and an **F** -projector of G [6]. These concepts were the natural extension of the concepts of Hall and Carter subgroups, namely, in a solvable group G the set of all \mathbf{E}_{π} -covering (**N**-covering) subgroups coincide with the set of all its π -Hall (nilpotent) subgroups where \mathbf{E}_{π} (**N**) is the class of all π -groups (the class of all nilpotent groups). We note that in the universe **S** of all solvable groups the concepts of an **F** -covering subgroup and of an **F**-projector coincide. Among classes of finite groups the central place belongs

to formations which was introduced by Gaschutz in [5]. A class of groups is called a formation if it is closed under homomorph images and under subdirect products. Gaschutz using function methods formed local formations and proved the existence and conjugacy of **F**-covering subgroups in a solvable group G for the class \mathbf{F} which is a local formation [5]. Another important properties of Fcovering subgroups and F-projectors of groups for the local formation **F** were obtained by Carter, Hawkes, Doerk, Huppert, L.A. Shemetkov, A.F. Shmigirev, Shmid, V.A. Vedernikov, S.F. Kamornikov and others (see [2, 7-9, 12, 14, 16, 18], for instance). Schunck in [13] proved that every local (saturated) formation is a primitively closed homomorph. Properties of F -covering subgroups and F -projectors of groups for the primitively closed homomorph F are studied in [3, 4, 13] and others.

The natural generalization of the concept of a local formation is the concept of an ω -local formation introduced by L.A. Shemetkov in [15] where ω is a non-empty set of primes. In the article [20] \mathbf{F}^{ω} -covering subgroups and \mathbf{F}^{ω} -projectors of groups were introduced for a non-empty class of groups \mathbf{F} and their crucial properties were obtained (existence, conjugacy, embedding and others) for the class \mathbf{F} which is an ω -local formation or an ω -primitively closed homomorph. This work continues the investigations in this direction. For an ω -local formation \mathbf{F} we have established the conditions under which an \mathbf{F} -subgroup of a group G is contained only in one its \mathbf{F}^{ω} -covering subgroup (Theorem 1). As corollaries these theorems imply the result of Carter, Hawkes on \mathbf{F} -covering subgroups and \mathbf{F} -projectors. Theorem proofs use classical methods of the theory of groups, as well as methods of the theory of classes of finite groups.

Preliminary Information. Used definitions and notations for groups are standard (see [2, 10, 11], for instance). Let us give only some notations and definitions. A note A := B means that the equality A=B is true by the definition.

Denote characterization of the class **F** by $\chi(\mathbf{F})$, i.e. $\chi(\mathbf{F})$ is a set of all primes p such that there exists a non-identity p-group in **F** (see [11], for instance); $\pi(\mathbf{F}) = \bigcup_{G \in \mathbf{F}}$

 $\pi(G)$. A class **F** is called *closed under homomorph images*, or briefly, *homomorph* if $G \in \mathbf{F}$ and $N \triangleleft G$ imply that $G/N \in \mathbf{F}$. A homomorph **F** is called *a formation*, if **F** is closed under subdirect products, i.e. $G/A \in \mathbf{F}$ and $G/B \in \mathbf{F}$ imply that $G/(A \cap B) \in \mathbf{F}$. A class **F** is called *closed under normal subgroups*, or briefly, *normal hereditary* if $G \in \mathbf{F}$ and $N \triangleleft G$ imply that $N \in \mathbf{F}$. A normal hereditary class **F** is called *a Fitting class* if **F** is closed under products of normal **F**-subgroups, i.e. G = AB where $A \triangleleft G$, $B \triangleleft G$, $A, B \in \mathbf{F}$ imply that $G \in \mathbf{F}$. A class **F** is called *a Fitting formation* if **F** is a formation and **F** is a Fitting class.

Let **F** be a non-empty Fitting formation. Then G^{F} and G_{F} are respectively an **F**-coradical of the group G (i.e. it

is the smallest normal subgroup of G quotient on which belongs to **F**) and an **F**-*radical* of G (i.e. the largest normal subgroup of G belonging to **F**) (see [2, 14], for instance). Henceforth ω stands for a non-empty subset of the set **P** of all primes; **F**_{ω} is a set of all ω -groups belonging to a class

F; $O_{\omega}(G)$ is an \mathbf{E}_{ω} -radical of a group G where **E** is a class of all finite groups. Let $f : \omega \bigcup \{\omega'\} \rightarrow \{\text{formations of groups}\}$ where $f(\omega') \neq \emptyset$, h: $\mathbf{P} \rightarrow \{\text{formations of groups}\}$, $\delta: \mathbf{P} \rightarrow \{\text{non-empty Fitting formations}\}$ are functions which are called respectively an ω F-function, an **P**F-function and an **P**FR-function. A formation $\mathbf{F} = (G: G/G/O_{\omega}(G) \in f(\omega') \text{ and } G/G_{\delta(p)} \in f(p) \text{ for any } p \in \omega \cap \pi(G))$ is called ω -fibered with the ω -satellite f and with the direction δ ; a formation $\mathbf{H} = (G: G/G_{\delta(p)} \in h(p) \text{ for any } p \in \pi(G))$ is called fibered with the satellite h and with the direction δ [19]. A fibered (ω -fibered) formation with the direction δ is called *local* (ω -*local*) if $\delta(p) = \mathbf{E}_{p'}, \mathbf{N}_p$ for

every $p \in \mathbf{P}$, where $\mathbf{E}_{p'} \mathbf{N}_{p}$ is the class of all finite p-nilpotent groups.

Remark 1. Every local formation is ω -local for any ω . If $\pi(\mathbf{F}) \subseteq \omega$ then an ω -local formation \mathbf{F} is local (see corollaries 3.2 and 4.2 [19], for instance). A class \mathbf{F} is called *saturated* (ω -*saturated*) if for any N \triangleleft G such that N $\leq \Phi(G)$ (respectively N $\leq \Phi(G) \cap O_{\omega}(G)$) the following property is fulfilled: G/N $\in \mathbf{F}$ implies that G $\in \mathbf{F}$ (see [2, 17], for instance).

Remark 2. According to Gaschutz-Lubezeder-Shmidt Theorem, a non-empty formation is saturated if and only if it is local (see Theorem IV, 4.6 [2]). A.N. Skiba and L.A. Shemetkov established equivalency of the concepts of an ω -saturated and an ω -local formations (Theorem 1 [17]).

Let **F** and **X** are non-empty classes of groups, $\mathbf{F} \subseteq \mathbf{X}$. . The class **F** is called *primitively closed in* **X**, or briefly, P-*closed in* **X** if for any group $G \in \mathbf{X} : G/Core_G(\mathbf{M}) \in \mathbf{F}$ for every $\mathbf{M} < \cdot \mathbf{G}$ implies that $G \in \mathbf{F}$ (see [2], for instance). A class **F** is called ω -*primitively closed in* **X**, or briefly, ω P-*closed in* **X** if for any group $G \in \mathbf{X} : G/Core_G(\mathbf{M}) \cap$

 $O_{\alpha}(G) \in \mathbf{F}$ for every $M < \cdot G$ implies that $G \in \mathbf{F}$ (Defi-

nition 2.5 [20]). A class **F** is called P-*closed* (ω P-*closed*) if **F** is P-closed (ω P-closed) in **E**.

Remark 3. According to Lemma 2.2 [20], every Pclosed in **X** homomorph is ω P-closed in **X** for any ω . If $\omega = \pi(\mathbf{F})$ then ω P-closed in **X** class is P-closed in **X** (Remark 2.3 [20]). In the article [20] it has been established that a non-empty formation **F** is ω P-closed if and only if it is ω -saturated (see Lemma 2.4 [20]).

Let **F** be a non-empty class of groups. A subgroup H of a group G is called an \mathbf{F}^{ω} -covering subgroup of G if $H \in$ **F** and the property $H \le U \le G$, V is a normal ω -subgroup of U with $U/V \in \mathbf{F}$ implies that U = HV (Definition 3.2 [20]). A subgroup H of a group G is called an \mathbf{F}^{ω} -projector of G if for every normal ω -subgroup N of G a subgroup HN/N is an **F**-maximal subgroup of G/N (Definition 3.1 [20]).

Remark 4. Every **F**-covering subgroup (**F**-projector) of the group G is its an \mathbf{F}^{ω} -covering subgroup (an \mathbf{F}^{ω} -projector) of G for any ω . If $\omega = \pi(G)$ then an \mathbf{F}^{ω} -covering subgroup (an \mathbf{F}^{ω} -projector) of G is an **F**-covering subgroup (an **F**-projector) of G (Remarks 3.1 and 3.2 [20]).

Let **F** be a non-empty formation. A normal subgroup R of a group G is called an \mathbf{F}^{ω} -*limit subgroup* of G if $R \leq G^{\mathbf{F}}$ and $R/(R \cap \Phi(G) \cap O_{\omega}(G))$ is a chief factor of the group G. A maximal subgroup M of a group G is called \mathbf{F}^{ω} -*critical* in G if G = MR for an \mathbf{F}^{ω} -limit subgroup R of G. An **F**-subgroup H of a group G is called an \mathbf{F}^{ω} -*normalizer* of G if there exists a chain H = H_t \subset H_{t-1} \subset ... \subset H₁ \subset H₀ = G where t ≥ 0 such that H_i is an \mathbf{F}^{ω} -critical subgroup of H_{i-1} for every i $\in \{1, 2, ..., t\}$ (Definition 3.1 [21]).

Lemma 1 (Theorem 2 [22]). Assume that **F** is an ω -local formation, an **F**-coradical **G**^{**F**} of a group **G** is a π (**F**)

)-selected ω -group. Then the group G has at least one \mathbf{F}^{ω} -covering subgroup (\mathbf{F}^{ω} -projector) and any two \mathbf{F}^{ω} -covering subgroups (any two \mathbf{F}^{ω} -projectors) of G are conjugate in G.

Lemma 2 (Theorem 3.4 [20]). Assume that **X** is a hereditary homomorph, **F** is a non-empty ω P-closed in **X** homomorph, $G \in \mathbf{X}$ and N is a nilpotent normal ω -subgroup of G. If H is an **F**-subgroup of G such that G = HN then H is contained into an \mathbf{F}^{ω} -covering subgroup of G. Particularly, if H is an **F**-maximal subgroup of G then H is an \mathbf{F}^{ω} -covering subgroup of G.

Lemma 3 (Lemma 3.4 [20]). Let **F** be a homomorph and G be a group. Then the following statements are true:

(1) If H is an \mathbf{F}^{ω} -projector of the group G and H $<\cdot$ G then H is an \mathbf{F}^{ω} -covering subgroup of G;

(2) If H is an \mathbf{F}^{ω} -covering subgroup of G and $H \leq K \leq$ G then H is an \mathbf{F}^{ω} -covering subgroup of K;

(3) If H is an $\bm{F}^\omega\text{-covering subgroup of G and N is a normal <math display="inline">\omega\text{-subgroup of G then HN/N is an}$

 \mathbf{F}^{ω} -covering subgroup of G/N;

(4) If N is a normal $\omega\text{-subgroup}$ of G and H/N is an \bm{F}^ω -covering subgroup of G/N then every

 \mathbf{F}^{ω} -covering subgroup of H is an \mathbf{F}^{ω} -covering subgroup of G.

3. The Main Result

In Theorem 3.4 [20] it has been established conditions under which an **F**-subgroup H of a group G is contained into some its \mathbf{F}^{ω} -covering subgroup. In the following theorem we obtain conditions under which H is contained only

into one \mathbf{F}^{ω} -covering subgroup of the group G.

Theorem 1. Assume that \mathbf{F} is an ω -local formation, G is a group, N is a nilpotent normal ω -subgroup of the group G, H is an \mathbf{F} -subgroup of G such that $\mathbf{G} = \mathbf{HN}$. If $\mathbf{N} \subseteq \mathbf{F}$ then the following statements are true:

(1) A normalizer $N_{G}(H)$ is contained into a \mathbf{F}^{ω} -covering subgroup of the group G;

(2) H is contained only into one \mathbf{F}^{ω} -covering subgroup of G.

Proof. Assume that $\mathbf{N} \subseteq \mathbf{F}$. Prove the statement (1). Induct on the order of the group G. If $G \in \mathbf{F}$ then G is an \mathbf{F}^{ω} -covering subgroup of G and the statement (1) is true. Suppose that $G \notin \mathbf{F}$. Then from G = HN we infer that $N \neq 1$. Assume that K is a minimal normal subgroup of the group G contained into N. Then K is a nilpotent ω -group. Show that a quotient G/K satisfies the hypotheses of the theorem. Indeed since \mathbf{F} is a formation and $H \in \mathbf{F}$ then $HK/K \in \mathbf{F}$. Moreover, $G / K = HK/K \cdot N/K$ and N/K is a nilpotent normal ω -subgroup of G/K. Since |G/K| < |G| then by induction $N_{G/K}(HK/K) \subseteq L/K$ where L/K is an \mathbf{F}^{ω} -covering subgroup of the group G/K. From $N_G(H) K/K \subseteq$

 $N_{G/K}(HK/K)$ it follows that $N_G(H) \subseteq L$.

Since, according to Remarks 2 and 3, the formation **F** is an ω P-closed homomorph in **E** then by Lemma 2 we infer that $H \subseteq T$ where T is an \mathbf{F}^{ω} -covering subgroup of the group G. Then by Lemma 3 (3) a quotient TK/K is an

F^ω-covering subgroup of G/K. From G/N = HN/N ≅ H/H ∩ N ∈ **F** we infer that G^{**F**} ⊆ N and, hence, G^{**F**} is a nilpotent ω-group. Since Lemma 1.2 (1) [14] implies that (G / K)^{**F**} = G^{**F**} K/K. Consequently, (G / K)^{**F**} is nilpotent and, so, (G / K)^{**F**} is a π(**F**)-selected ω-group. Then by Lemma 1 L/K and TK/K are conjugate in G/K. Therefore, there exists an element x ∈ G such that L/K = (TK / K)^{xK} From this we conclude that L = T₁K where T₁ := T^x. Lemma 1 yields that a subgroup T₁ is an **F**^ω-covering subgroup of G and by Lemma 3 (2) T₁ is an **F**^ω-covering subgroup of the group L.

1. Consider the case $L \neq G$. Since $H \subseteq N_{G}(H) \subseteq L$ then $L = L \cap G = L \cap HN = H (L \cap N)$. Since $L \cap N$ is a nilpotent normal ω -subgroup of the group L then by induction we infer that $N_{L}(H) \subseteq R$ where R is an \mathbf{F}^{ω} -covering subgroup of the group L. Since $L/K = T_{1}K/K \cong T_{1}/T_{1} \cap K \in \mathbf{F}$ then $L^{\mathbf{F}} \subseteq K$ and, therefore, $L^{\mathbf{F}}$ is a nilpotent ω -group. According to Lemma 1, R and T_{1} are conjugate in L. Thus, $R = T_{1}^{y}$ for some $y \in L$. Since T_{1} is an \mathbf{F}^{ω} -covering subgroup of G then by Lemma 1 R is an \mathbf{F}^{ω} -covering subgroup of G. The inclusion $N_{G}(H) \subseteq L$ implies that $N_{G}(H) = N_{G}(H) \cap L = N_{L}(H)$ and, hence, $N_{G}(H) \subseteq R$. Thus, if $L \neq G$ then $N_{G}(H)$ is contained into the \mathbf{F}^{ω} -covering subgroup R of G.

2. Suppose that L = G. Verify that $N_1 \triangleleft G$ where N_1 := $T_1 \bigcap N$. Indeed, since N is a nilpotent normal subgroup of G and $K \cong K/1$ is a chief factor of G then Corollary 4.1.1 [14] yields $N \subseteq F(G) \subseteq C_G(K)$ and, therefore, K $\subseteq N_G(N_1)$. Since $N_1 \triangleleft T_1$ then $G = T_1K \subseteq$ $N_G(N_1)$ and, hence, $N_1 \triangleleft G$.

2.1. Assume that $N_1 \neq 1$. Since $G/N_1 = H N_1 / N_1 \cdot N/N_1$ and N/N_1 is a nilpotent normal ω -subgroup of the group G/N_1 then by induction we infer that $N_{G/N_1}(HN_1/N_1) \subseteq S/N_1$ where S/N_1 is an \mathbf{F}^{ω} -covering subgroup of G/N_1 . Since $N_G(H) N_1 / N_1 \subseteq N_{G/N_1}(HN_1/N_1)$ then it follows that $N_G(H) \subseteq S$. Lemma 3 (3) implies that the subgroup T_1/N_1 is an \mathbf{F}^{ω} -covering subgroup of G/N_1 . By Lemma 1.2 (1) [14] $(G/N_1)^{\mathbf{F}}$ is a nilpotent ω -group. Then, according Lemma 1, we infer that T_1/N_1 and S/N_1 are conjugate in G/N_1 . Hence, $(T_1/N_1)^{aN_1} = S/N_1$ for some element $a \in G$. Consequently, $T_1^{a} = S$ and Lemma 1 implies

that S is an \mathbf{F}^{ω} -covering subgroup of G. Apart from that, as we have shown above, $N_{G}(H)$ is contained into S.

2.2. Suppose that $N_1 = 1$. In this case prove that N = K. Indeed, since $K \subseteq N$ and $T_1 \cap N = 1$ then $T_1 \cap K = 1$. Therefore, $G = L = T_1[K]$. On the other hand, $G = T_1[N]$. Thus, N = K and from G = HN we infer that G = HK. Then $G = H^x K$. The equalities $H^x \subseteq T^x = T_1$ and $T_1 \cap K$ = 1 imply that $G = H^x[K]$. Then $H^x < G$ and by Lemma 3.17 (2) [11] we infer that H < G. Since $G \notin F$ then H is an **F**-maximal subgroup of G and, according Lemma 2, it follows that H is an \mathbf{F}^{\odot} -covering subgroup of G. If $N_G(H) \neq H$ then $N_G(H) = G$. Consequently, $N_G(H^x)$ $= (N_G(H))^x = G$ and, hence, $H^x \leq G$. From this we conclude that $G = H^x \times K$. Since $H^x \in \mathbf{F}$, $K \in \mathbf{N} \subseteq \mathbf{F}$ and **F** is a formation then $G \in \mathbf{F}$ which is contradiction. Thus, $N_G(H) = H$. The statement (1) is proved.

Prove the statement (2). Induct by the order of G. As above, we can assume that $G \notin \mathbf{F}$ and $N \neq 1$. Suppose that K is a minimal normal subgroup of the group G such that $K \subseteq N$. By Lemma 2 H is contained into an \mathbf{F}^{ω} -covering subgroup of G. Put $M := \{T_1, \ldots, T_m\}$ is a set of all \mathbf{F}^{ω} -covering subgroups of the group G containing H. Show that |M| = 1.

Assume that i, $j \in \{1, 2, ..., m\}$, $i \neq j$. Since T_i and T_j are \mathbf{F}^{ω} -covering subgroups of the group G containing H, and K is a normal ω -subgroup of G, Lemma 3 (3) implies that T_i K/K and T_j K/K are \mathbf{F}^{ω} -covering subgroups of the group G/K, and, furthermore, HK/K $\subseteq T_i$ K/K and HK/K $\subseteq T_j$ K/K. Since the group G/K satisfies the hypotheses then by induction we infer that T_i K/K = T_j K/K and, hence, T_i K = T_i K := D.

a) Consider the case $D \neq G$. By Lemma 3 (2) subgroups T_i and T_j are \mathbf{F}^{ω} -covering subgroups of the group D containing H. Moreover, $D = G \bigcap D = HN \bigcap D = H \ (N \bigcap D)$ and $N \bigcap D$ is a nilpotent normal ω -subgroup of the group D. Then by induction we have $T_i = T_j$ and, therefore, in this case we conclude that |M| = 1.

b) Assume that D = G. If $T_i \cap K \neq 1$ then from that a subgroup $T_i \cap K$ is normal in G and K is a minimal normal subgroup of G it follows that $T_i \cap K = K$. Then $K \subseteq T_i$ and $G = T_i K = T_i$. Thus, in this case we have $T_i = G = T_j$. If $T_j \cap K \neq 1$ then we obtain the same conclusion.

Suppose that $T_i \cap K = 1 = T_j \cap K$. Then $G = T_i [K] = T_j[K]$ and, hence, $T_i < \cdot G$, $T_j < \cdot G$. By Lemma 1

subgroups T_i and T_j are conjugate in G. Therefore, T_i^k = T_j for some $k \in K$. Since $HK \cap T_i = H (K \cap T_i) = H$ and $HK \cap T_j = H(K \cap T_j) = H$ then $H^k = (HK \cap T_i)^k$ $\subseteq (HK)^k \cap T_i^k = HK \cap T_j = H$. Consequently, $k \in N_G(H)$. By the statement (1) of this theorem we infer that $N_G(H) \subseteq T$ where T is an F^{ω} -covering subgroup of G. Hence, $k \in T$. Thus, we have established that for any i, j $\in \{1, 2, ..., m\}$ the following equality is true $T_i^k = T_j$ where $k \in T$. Since $H \subseteq N_G(H)$ then $T \in M$ and, therefore, $T = T_s$ for some s where $1 \le s \le m$. Assume that $r \in \{1, 2, ..., m\}$. Since T_r , $T_s \in M$ then, by proved above, we infer that $(T_s)^1 = T_r$ where $1 \in T = T_s$. Conse-

quently, $T_r = T$ for any $r \in \{1, 2, ..., m\}$. Thus, we conclude that |M| = 1. The statement (2) is proved. The theorem is proved.

Conclusion. In view of Remarks 1 and 4, Theorem 1 directly implies the following well-known result for local formations.

Corollary 1.1 (Carter, Hawkes, Theorems 5.8 and 5.9 [1], see also Theorem 15.9 [14]). Assume that **F** is a local formation, G is a group with the nilpotent **F**-coradical. Let H be an **F**-subgroup of G such that G = HF(G). If **N** \subseteq **F** then the following statements are true:

(1) $N_{G}(H)$ is contained into an **F**-covering subgroup of G;

(2) H is contained only into one \mathbf{F} -covering subgroup of G.

REFERENCES

- Carter R., Hawkes T. The F-normalizers of a finite soluble group // J. Algebra. 1967. V. 5. N 2. P. 175–201.
- Doerk K., Hawkes T. Finite soluble groups. Walter de Gruyter, Berlin – New Jork, 1992. 891 p.
- Erickson R. Projectors of finite groups // Comm. Algebra. 1982. V. 10. P. 1919–1938.
- Forster P. Projektive Klassen endlicher Gruppen I. Schunckund Gaschutz Klassen // Math. Z. 1984. V. 186. P. 249–278.
- Gaschutz W. Zur Theorie der endlichen auflosbaren Gruppen // Math. Z. 1963. V. 80. N 4. P. 300–305.
- Gaschutz W. Lectures on subgroups of Sylow type in finite soluble groups. – Canberra: Notes on Pure Mathematics 11, Austr. Nat. Univ., 1979. 98 p.
- 7. Hawkes T. On formation subgroups of finite soluble group // J. London Math. Soc. 1968. V. 44. N 2. P. 243–250.
- Huppert B. Zur Theorie der Formationen // Arch. Math. 1969.
 V. 19. N 6. P. 561–574.
- Kamornikov S.F. On formation products of finite groups // Arithmetic and subgroup structure of finite groups. – Minsk: Science and Technology, 1986. P. 69–74.
- 10. Kurosh A.G. The theory of groups. M.: Nauka, 1967. 648 p.
- Monakhov V.S. Introduction to the theory of finite groups and their classes. – Minsk: Vys. shk., 2006. 207p.
- 12. Schmid P. Lokale Formationen endlicher Gruppen // Math. Z. 1974. V. 137. N 1. P. 31–48.
- Schunck H. H -Untergruppen in endlichen auflosbaren Gruppen // Math. Z. 1967. V. 97. N 4. P. 326–330.

- 14. Shemetkov L.A. Formations of finite groups. M.: Nauka, 1978. 272 p.
- Shemetkov L.A. On products of formations // Dokl. AN BSSR. 1984. V. 28. N 2. P. 101–103.
- Shmigirev E.F. On some questions of the theory of formations // In: Finite groups. – Minsk: Science and Technology, 1975. P. 213–225.
- 17. Skiba A.N., Shemetkov L.A. Multiply ω -local formations and Fitting classes of finite groups // Mat. Works. 1999. V. 2. N 2. P. 114–147.
- Vedernikov V.A. On F -projectors of groups // Voprosy Algebry. – Gomel, 1985. V. 1. – P. 9–22.
- 19. Vedernikov V.A., Sorokina M.M. The ω -fibered formations and Fitting classes of finite groups // Math. Notes. 2002. V. 71. N 1. P. 43–60.
- Vedernikov V.A., Sorokina M.M. The F-projectors and Fcovering subgroups of finite groups // Sib. Math. J. 2016. V. 57. N 6. P. 1224–1239.
- 21. Vedernikov V.A., Sorokina M.M. The \mathbf{F}^{ω} -normalizers of finite groups // Sib. Math. J. 2017. V. 58. N 1. P. 64–82.
- 22. Vedernikov V.A., Sorokina M.M. On properties of \mathbf{F}^{ω} -pro
 - jectors and \mathbf{F}^{ω} -covering subgroups of finite groups // Actual problems of applied mathematics and physics: international scientific conference: Tez. doc. Nalchik: IPMA KBSC RAS, 2017. P. 262–263.