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Abstract. The definitions and properties of fundamental solution for nonlocal multi-point in time problem for evolution equations with 

pseudodifferential operators constructed at variable symbols is given. The solvability of multi-point problem in the 𝑊 type spaces is 

installed and the integral image interpretation of solution is given. 
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Introduction. A rather broad class of differential equa-

tions with partial derivatives are linear parabolic and 𝐵-

parabolic equations, whose theory originates from the in-

vestigation heat equation. The classical theory of the Cau-

chy problem and boundary-value problems for such equa-

tions and systems of equations is constructed in the works 

of I.G. Petrovsky, S.D. Eidelman, S.D. Ivashyshen, M.I. 

Matiychuk, M.V. Zhytarash, A. Friedman, S. Teklind, 

V.O. Solonnikov, V.V. Krehivsky and others. The Cauchy 

problem with initial data from the spaces of generalized 

functions of the type of distributions and ultra-distributions 

was studied by G.E. Shilov, B.L. Gurevich, M.L. Gorba-

chuk, V.I. Gorbachuk, O.I. Kashpirovsky, Ya.I. Zhyto-

myrsky, S.D. Ivashyshenym, V.V. Gorodetsky, V.A. Lito-

vchenko, etc. 

A formal extension of the class of parabolic type equa-

tions is the evolution equations with pseudodifferential op-

erators (PDOs), which can be represented as 𝐴 =
𝐼𝜎→𝑥

−1 [𝑎(𝑡, 𝑥;  𝜎)𝐼𝑥→𝜎],   {𝑥, 𝜎}  ⊂ ℝ𝑛 , 𝑡 > 0, where 𝑎 is 

a function (symbol) that satisfies certain conditions, 𝐼, 𝐼−1 

is a direct and inverse Fourier or Bessel transform. PDOs 

include differential operators, fractional differentiation and 

integration operators, convolution operators, Bessel opera-

tor 𝐵𝜈 = 𝑑2/𝑑𝑥2 + (2𝜈 + 1)𝑥−1𝑑/𝑑𝑥,     𝜈 > −1/2 , 

which in its structure contains the expression 1/𝑥 and for-

mally represented as 𝐵𝜈 = 𝐹 𝐵𝜈
−1[−𝜎2𝐹𝐵𝜈

] , where 𝐹𝐵𝜈
 is 

the integral transformation of Bessel and others. 

Today, in the theory of the Cauchy problem for evolu-

tionary pseudodifferential equations in questions of the 

correct solvability of the Cauchy problem, the image of the 

solution in the case where the initial conditions are ele-

ments of different functional spaces (in particular, the 

spaces of generalized functions), significant results are ob-

tained, native and foreign mathematicians (M. Nagase, R. 

Shinkai, C. Tsutsumi, Yu.A. Dubinsky, S.D. Eidelman, 

M.V. Fedoryuk, Y.M. Dryin, V.V. Gorodetsky, etc.). 

One of the generalizations of the Cauchy problem for 

partial differential equations is the nonlocal multi-point in 

time problem, where the initial condition 𝑢(𝑡,⋅)|𝑡=0 = 𝑓 is 

replaced by the condition ∑𝑚
𝑘=0 𝛼𝑘𝑢(𝑡,⋅)|𝑡=𝑡𝑘

= 𝑓, where 

𝑡0 = 0,  {𝑡1, . . . , 𝑡𝑚} ⊂ (0, 𝑇],  {𝛼0, 𝛼1, . . . , 𝛼𝑚} ⊂ ℝ,  𝑚 ∈
ℕ – are fixed numbers (if 𝛼0 = 1, 𝛼1 = 𝛼2 =. . . = 𝛼𝑚 =
0, then obviously we have a Cauchy problem.) Nonlocal in 

time problems refer to nonlocal boundary-value problems 

for equations with partial derivatives. Nonlocal problems 

arise when modeling different processes and practices of 

boundary-value problems for equations with partial 

derivatives with nonlocal conditions (see. eg., [1, 2]). 

Many mathematicians have been involved in the study 

of nonlocal boundary value problems using different 

methods and approaches (see, for example, [3–11]). 

Important results were obtained concerning the 

formulation, correct solvability and solution construction, 

and the conditions of regularity of boundary conditions 

were formulated for important cases of differential 

operator equations. 

This paper investigates a nonlocal multi-point in time 

problem for evolution equations with pseudodifferential 

operators constructed at variable symbols by Fourier 

transform. The analytic function of a pseudodifferential 

operator symbol character makes it possible to understand 

such an operator as an infinite-order differentiating 

operator with variable coefficients acting in a certain space 

of analytic functions. This gives a definition of the 

fundamental solution of the specified problem and 

investigates the properties of such a solution, establishes 

the solvability of the multi-point problem. An integral 

image of the solution is found. 

Previous data. Consider the function 𝜔: [0, +∞) ⟶
[0, +∞), which is continuous and increasing, with 𝜔(0) =

0, lim
𝑥→+∞

𝜔(𝑥) = +∞. Set Ω(𝑥) = ∫
𝑥

0
𝜔(𝜉)𝑑𝜉 for 𝑥 ≥ 0. 

The function Ω has the following properties: 

1) Ω is a differential function increasing by [0, +∞), 

and Ω(0) = 0, lim
𝑥→+∞

Ω(𝑥) = +∞; 

2) Ω is a convex downward function [12, p. 8], that is 

∀{𝑥1, 𝑥2} ⊂ [0, +∞): Ω(𝑥1) + Ω(𝑥2) ≤ Ω(𝑥1 + 𝑥2). 
We define the function Ω on (−∞, 0] in an even way. 

Next, consider the function 𝜇: [0, +∞) ⟶ [0, +∞), which 

has the same properties, like the 𝜔 function. Set 𝑀(𝑥) =

∫
𝑥

0
𝜇(𝜉)𝑑𝜉 , 𝑀(−𝑥) = 𝑀(𝑥)  for 𝑥 ≥ 0 . Using the 

functions 𝑀  and Ω , B.L. Gurevich [13] introduced a 

series of spaces, which he called spaces 𝑊 . Here are 

definitions of some of these spaces. 

The space 𝑊𝑀
Ω is constructed by the functions Ω and 

𝑀 and is defined as the set of integer functions 𝜑: ℂ → ℂ 

that satisfy the inequality |𝜑(𝑧)| ≤ �̃�exp{  −𝑀(�̃�𝑥) +

Ω(�̃�𝑦)}, 𝑧 = 𝑥 + 𝑖𝑦, with some positive constants �̃�, �̃�, �̃�, 

dependent only on 𝜑. 𝑊𝑀
Ω can be represented as a union 

of count-normalized spaces 𝑊𝑀,𝑎
Ω,𝑏

, where 𝑊𝑀,𝑎
Ω,𝑏

 consists 

of those functions 𝜑 ∈ 𝑊𝑀
Ω for which the inequalities  

|𝜑(𝑥 + 𝑖𝑦)| ≤ �̃�exp{−𝑀(�̅�𝑥) + Ω(�̅�𝑦)},  

𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, 
where �̅� is an arbitrary positive constant less than �̃� and 
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�̅� is arbitrarily constant greater than �̃�. If for 𝜑 ∈ 𝑊𝑀,𝑎
Ω,𝑏

 

we set 

||𝜑||𝛿𝜌 = sup
𝑧∈𝐶

[|𝜑(𝑧)| × 

× exp {−Ω((�̃� + 𝜌)𝑦) + 𝑀(�̃�(1 − 𝛿)𝑥)}],  
  {𝛿, 𝜌} ⊂ {1/𝑛, 𝑛 ≥ 2}, 

then with these norms the space 𝑊𝑀,𝑎
Ω,𝑏

 becomes a 

complete perfect countable-normalized space [12, p. 16]. 

Combining the spaces 𝑊𝑀,𝑎
Ω,𝑏

 over all 𝑎 = 1,
1

2
, … and 𝑏 =

1,2, … matches the space 𝑊𝑀
Ω. 

The spaces 𝑊  are taken by the Fourier transform to 

spaces of the type 𝑊 . To state a related assertion, we 

introduce the notion of Young dual functions.Let 𝑀(𝑥) 

and Ω(𝑦) be functions defined via the functions 𝜇(𝜉) and 

𝜔(𝜂) respectively. If the functions 𝜇 and 𝜔 are mutually 

inverted, that is, 𝜇(𝜔(𝜂)) = 𝜂 and 𝜔(𝜇(𝜉)) = 𝜉, then the 

functions 𝑀(𝑥)  and Ω(𝑦)  are said to be Young dual. 

Examples of mutually dual functions are the functions  

𝑀(𝑥) = 𝑥𝑝/𝑝, Ω(𝑦) = 𝑦𝑞/𝑞, 1/𝑝 + 1/𝑞 = 1. 

We denote by 𝑊𝑀
Ω(ℝ) the set of functions given by ℝ, 

which are narrowing functions from 𝑊𝑀
Ω  by ℝ . The 

correct formula is [12, p. 32]: 𝐹[𝑊𝑀
Ω(ℝ)] = = 𝑊𝑀1

Ω1(ℝ), 

where 𝐹 is the Fourier transform, Ω1 and 𝑀1 – functions 

Young dual to the functions 𝑀 and Ω, respectively. 

For arbitrarily fixed 𝛼, 𝛽 > 0 we set  

𝑆𝛼
𝛽(ℝ) ≡ 𝑆𝛼

𝛽
≔ {𝜑 ∈ 𝐶∞(ℝ)| ∃𝑐, 𝐴, 𝐵 > 0   

∀{𝑘, 𝑛} ⊂ ℤ+  ∀𝑥 ∈ ℝ: 
|𝑥𝑘𝜑(𝑛)(𝑥)| ≤ 𝑐𝐴𝑘𝐵𝑛𝑘𝑘𝛼𝑛𝑛𝛽}. 

The spaces introduced can be characterized as [14, p. 

210]. The spaces 𝑆𝛼
𝛽

 are non-trivial at 𝛼 + 𝛽 ≥ 1  and 

form dense sets in 𝐿2(ℝ). 𝑆𝛼
𝛽

 consists of those and only 

those functions 𝜑 ∈ 𝐶∞(ℝ), the inequality  

|𝜑(𝑛)(𝑥)| ≤ 𝑐𝐵𝑛𝑛𝑛𝛽 exp(−𝑎|𝑥|1 𝛼⁄ ) , 𝑛 ∈ ℤ+, 𝑥 ∈ ℝ, 

hold with some positive constants 𝑐, 𝑎, 𝐵 dependent on 

the function 𝜑. 

If 0 < 𝛽 < 1  and 𝛼 ≥ 1 − 𝛽 , then 𝑆𝛼
𝛽

 consists of 

those and only functions 𝜑 ∈ 𝐶∞(ℝ) which analytically 

continued in the complex plane and satisfying inequality  

|𝜑(𝑥 + 𝑖𝑦)| ≤ 𝑐exp(−𝑎|𝑥|1/𝛼 + 𝑏|𝑦|1/(1−𝛽)), 
𝑐, 𝑎, 𝑏 > 0. 

Note that 𝑆𝛼
𝛽

≡ 𝑊𝑀
Ω , where 𝑀(𝑥) = 𝑥1/𝛼 , Ω(𝑦) =

𝑦1/(1−𝛽),0 < 𝛼 < 1,0 < 𝛽 < 1, 𝛼 + 𝛽 ≥ 1. 

The spaces of 𝑆𝛼
𝛽

 by Fourier transforms are reflected in 

spaces of the same type, namely, the formula is correct [14, 

p. 245]: 𝐹[𝑆𝛼
𝛽

] = 𝑆𝛽
𝛼. 

Problem statement. Consider the function 𝑎(𝑡, 𝑥; 𝜎) 

given by [0, 𝑇] × ℝ × ℝ which satisfies the conditions: 

1) 𝑎(𝑡, 𝑥; 𝜎) is a continuously differentiating function 

of the argument 𝑡 ∈ [0, 𝑇] (for fixed 𝑥, 𝜎); 𝑎(𝑡, 𝑥; 𝜎) is a 

continuously differentiable function of 𝑥 (for fixed 𝑡, 𝜎) 

bounded by ℝ; 

2) for fixed 𝑡, 𝑥, the function 𝑎(𝑡, 𝑥; 𝜎), as a function of 

variable 𝜎 , permits analytic extension into the whole 

complex plane, while  

∀휀 > 0   ∃𝑐 > 0   ∀𝜎 + 𝑖𝜏 ∈ ℂ:   
 |𝑎(𝑡, 𝑥; 𝜎 + 𝑖𝜏)| ≤ 𝑐 exp{𝑀(휀𝜎) + Ω(휀𝜏)},    

∀(𝑡, 𝑥) ∈ Π𝑇 ≡ [0, 𝑇] × ℝ 

(ie, 𝑎(𝑡, 𝑥;⋅) multiplier in 𝑊𝑀
Ω space);  

∃𝑐, 𝑎, 𝑏 > 0:    

|exp {𝑎(𝑡, 𝑥; 𝜎 + 𝑖𝜏)}| ≤ 𝑐exp{−𝑀(𝑎𝜎) + Ω(𝑏𝜏)},  
  ∀(𝑡, 𝑥) ∈ Π𝑇 

(ie, exp{𝑎(𝑡, 𝑥;⋅)} ∈ 𝑊𝑀
Ω). 

We also consider that 𝑀 satisfies the condition: ∃𝑐0 >
0 ∀𝑥 ∈ ℝ: 𝑀(𝑥) ≥ 𝑐0|𝑥|𝛼 , with fixed parameter 𝛼 > 2. 

Consider the pseudodifferential operator 𝐴, constructed 

by a symbol 𝑎(𝑡, 𝑥; 𝜎): 

(𝐴𝜓)(𝑥) ≔ 𝐹𝜎→𝑥
−1 [𝑎(𝑡, 𝑥; 𝜎)𝐹𝑥→𝜎[𝜓(𝑥)](𝜎)](𝑥), 

∀𝜓 ∈ 𝑊𝑀1

Ω1(ℝ), 

where 𝑀1, Ω1 – functions Young dual to the functions 

𝑀  and Ω , respectively.From the properties of the 

functions 𝑎(𝑡, 𝑥; 𝜎), it follows that       𝐴𝜓 ∈ 𝐾(ℝ) for 

every 𝑡 ∈ [0, 𝑇] , where 𝐾(ℝ)  is a normalized space 

consisting of continuous functions 𝜑  bound for ℝ with 

||𝜑|| = sup
𝑥∈ℝ

|𝜑(𝑥)|. Note also that 𝐴 can be understood as 

the operator of differentiation infinite order (see. [15]), ie 

𝐴 = ∑∞
𝑘=0 𝑐𝑘(𝑡, 𝑥)(−𝑖𝐷𝑥)𝑘 , provided that 𝑎(𝑡, 𝑥; 𝜎) =

∑∞
𝑘=0 𝑐𝑘(𝑡, 𝑥)𝜎𝑘  is the Taylor series of the function 

symbol 𝑎 by the variable 𝜎 (at the fixed 𝑡, 𝑥). 

In the band Π′𝑇 = {(𝑡, 𝑥): 0 ≤ 𝜏 < 𝑡 ≤ 𝑇,      𝑥 ∈ ℝ} 

we consider the problem of finding the solution of the 

evolution equation  

𝜕𝑢(𝑡, 𝑥)/𝜕𝑡 = 𝐴𝑢(𝑡, 𝑥),   (𝑡, 𝑥) ∈ Π′𝑇 , (1) 

which satisfies the conditions:  

𝑢(𝑡, 𝑥) = 𝑢1(𝑡, 𝑥) + 𝑢2(𝑡, 𝑥), 

𝜇 lim
𝑡→𝜏+0

𝑢1(𝑡, 𝑥) − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝑢1(𝑡, 𝑥) = 𝜑(𝑥), (2) 

lim
𝑡→𝜏+0

𝑢2(𝑡, 𝑥) = 0, (3) 

at each point 𝑥 ∈ ℝ for the fixed function       𝜑 ∈

𝑊𝑀1

Ω1(ℝ),  𝑚 ∈ ℕ,  {𝜇, 𝜇1, . . . , 𝜇𝑚} ⊂ (0, +∞) , 

{𝑡1, . . . , 𝑡𝑚} ⊂ (𝜏, 𝑇]  are fixed numbers, and      𝜇 >
𝑚 ∑𝑚

𝑘=1 𝜇𝑘,  0 ≤ 𝜏 < 𝑡1 <. . . < 𝑡𝑚 = 𝑇.  Problem (1)–(3) 

is called nonlocal 𝑚-point (multi-point) in time problem 

for equation (1). 

Main results. At a fundamental solution of the problem 

(1)–(3) we understand the function  

𝑍(𝑡, 𝑥; 𝜏, 𝜉) = 𝑉(𝑡, 𝑥; 𝜏, 𝜉) + Γ(𝑡, 𝑥; 𝜏, 𝜉),     
(𝑡, 𝑥) ∈ Π′𝑇 ,    0 ≤ 𝜏 < 𝑡 ≤ 𝑇,    𝜉 ∈ ℝ, 

which has the properties of: 

1)𝐿𝑍(𝑡, 𝑥; 𝜏, 𝜉) = 0, 𝐿 ≡ 𝐿(𝑡, 𝑥; 𝐴, 𝜕/𝜕𝑡): =        = 𝜕/
𝜕𝑡 − 𝐴, ie 𝑍, as a function of (𝑡, 𝑥) (at the fixed 𝜏, 𝜉) is 

the solution of equation (1); 

2) 𝜇 lim
𝑡→𝜏+0

∫ 𝑉(𝑡, 𝑥; 𝜏, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ

− 

− ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

∫ 𝑉(𝑡, 𝑥; 𝜏, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ

= 𝜑(𝑥),  

lim
𝑡→𝜏+0

∫ Γ(𝑡, 𝑥; 𝜏, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ

= 0 

at each point 𝑥 ∈ ℝ  for an arbitrary function 𝜑 ∈

𝑊𝑀1

Ω1(ℝ). 

To construct the function 𝑍, we use the Levi method (by 

parametrix). To this end, we fix 𝑎(𝑡, 𝑥; 𝜎)  at (𝑡, 𝑥) =
(𝜒, 𝜉) , 𝜒 ∈ [𝜏, 𝑇] , 𝜉 ∈ ℝ  and consider the 𝑚 -point 

problem for evolutionary equations with constant symbol 

𝑎(𝜒, 𝜉; 𝜎):  

𝐿(𝜒, 𝜉; 𝐴, 𝜕/𝜕𝑡)𝑣(𝑡, 𝑥) = 0,    (𝑡, 𝑥) ∈ Π′𝑇 , (4) 
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𝜇 lim
𝑡→𝜏+0

𝑣(𝑡, 𝑥) − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝑣(𝑡, 𝑥) = 𝜑(𝑥), (5) 

𝜑 ∈ 𝑊𝑀1

Ω1(ℝ).  

Solution 𝑣 ∈ 𝐶1((𝜏, 𝑇], 𝑊𝑀1

Ω1(ℝ)  of problem (4), (5) 

will be sought by means of the Fourier transform. We find 

directly, that  

𝑣(𝑡, 𝑥) = ∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜔; 𝜒, 𝜉)𝜑(𝜔)𝑑𝜔

ℝ

= 

= 𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉) ∗ 𝜑(𝑥), 
where  

𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉) = 𝐹𝜎→𝑥
−1 [𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎)], 

𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎) = exp{(𝑡𝑘 − 𝜏)𝑎(𝜒, 𝜉; 𝜎)} × 

× (𝜇 − ∑

𝑚

𝑘=1

𝜇𝑘exp{(𝑡𝑘 − 𝜏)𝑎(𝜒, 𝜉; 𝜎)})

−1

. 

The properties of function 𝐺 depend on the properties 

of function 𝑄 , since 𝐺 = 𝐹−1[𝑄] . Using the results 

obtained in [16, p. 192], we come to the statement that there 

exists 𝑐, 𝑎, 𝑏 > 0, which are independent of 𝑡, 𝜏, 𝜒, 𝜉 such 

that for 𝑄 and its derivatives (by the variable 𝜎) estimates 

are valid  

|𝐷𝜎
𝑛𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎)| ≤ 𝑐 (

𝑏𝑒

𝜌𝑛

)
𝑛

𝑛! 𝑒−(𝑡−𝜏)𝑀(𝑎𝜎), (6) 

 𝑛 ∈ ℤ+,    𝜎 ∈ ℝ,   
where 𝜌𝑛  is a solution of the equation 𝜎𝜔(𝜎) = 𝑛, 𝑛 ∈
ℤ+, 𝜔 = Ω′. 

Due to the Stirling formula 

𝑛! = √2𝜋𝑛𝑛𝑛𝑒−𝑛𝑒𝜃/(12𝑛), 0 < 𝜃 < 1. Then, using (6) 

and the estimate 𝑀(𝜎) ≥ 𝑐0|𝜎|𝛼 , 𝜎 ∈ ℝ, find that  

|𝐷𝜎
𝑞

𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎)| ≤ 𝑐𝑒√2𝜋√𝑞 (
𝑞

𝑒
)

𝑞

(
𝑏𝑒

𝜌𝑞

)

𝑞

× 

× exp{−(𝑡 − 𝜏)�̃�0|𝜎|𝛼} ≤ 

≤ 𝑐2𝑏𝑞𝑞𝑞exp{−�̃�0(𝑡 − 𝜏)|𝜎|𝛼},    𝑞 ∈ ℤ+, 

where 𝑐2 = 𝑐𝑐1𝑒√2𝜋  (the properties of the sequence 

{𝜌𝑞 , 𝑞 ∈ ℤ+} are taken into account here; see [16, p. 168]). 

We are directly convinced that the true inequality  

|𝜎𝑘exp {−𝑐0
′ (𝑡 − 𝜏)|𝜎|𝛼}| ≤ (𝑡 − 𝜏)−𝑘 𝛼⁄ 𝐵𝑘𝑘𝑘 𝛼⁄ , 

    𝑘 ∈ ℤ+, 
where 𝑐0

′ = �̃�0/2 , 𝐵 = (𝛼�̃�0′𝑒)−1/𝛼 . From the last 

inequality follow the estimates  

|𝜎𝑘𝐷𝜎
𝑞

𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎)| ≤ 

≤ 𝑐2𝐵𝑘(𝑡 − 𝜏)−𝑘 𝛼⁄ 𝑘𝑘 𝛼⁄ 𝑏𝑞𝑞𝑞 × 

× exp{−𝑐0
′ (𝑡 − 𝜏)|𝜎|𝛼}.  (7) 

Based on the estimates (7), we conclude that at  𝑡 > 𝜏 

the function 𝑄 , as a function of the argument 𝜎 , is an 

element of the space 𝑆1/𝛼
1 . 

Next, we use the ratios  

𝑥𝑞𝐷𝑥
𝑘𝐹[𝜑](𝑥) = 𝑖𝑘+𝑞𝐹[(𝜎𝑘𝜑(𝜎))(𝑞)] = 

= 𝑖𝑘+𝑞 ∫(𝜎𝑘𝜑(𝜎))(𝑞)𝑒𝑖𝑥𝜎𝑑𝜎

ℝ

, 

    {𝑘, 𝑞} ⊂ ℤ+,    𝜑 ∈ 𝑆1/𝛼
1 . 

Consequently,  

𝑥𝑞𝐷𝑥
𝑘𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉) = (2𝜋)−1(−1)𝑞𝑖𝑘+𝑞 × 

× ∫(𝜎𝑘𝑄(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎))(𝑞)𝑒−𝑖𝑥𝜎𝑑𝜎

ℝ

. 

From the results given in [14, p. 243] implies that the 

double sequence 𝑚𝑘𝑞 = 𝑘𝑘/𝛼𝑞𝑞 , {𝑘, 𝑞} ⊂ ℤ+ , satisfies 

the inequality  

𝑘𝑞
𝑚𝑘−1,𝑞−1

𝑚𝑘𝑞

≤ 𝛾(𝑘 + 𝑞),    𝛾 > 0. 

Then, applying the Leibniz formula for the product 

differentiation of two functions, the estimate (7) and the 

last inequality we find that  

|(𝜎𝑘𝑄(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎))(𝑞)| = 

= |∑

𝑞

𝑝=0

𝐶𝑞
𝑝

(𝜎𝑘)(𝑝)𝑄(𝑞−𝑝)(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎)| ≤ 

≤ |𝜎𝑘𝑄(𝑞)(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎)| + 

+𝑘𝑞|𝜎𝑘−1𝑄(𝑞−1)(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎)| +
𝑘(𝑘 − 1)

2
× 

× 𝑞(𝑞 − 1)|𝜎𝑘−2𝑄(𝑞−2)(𝑡 − 𝜏, 𝜒; 𝜉, −𝜎)|+. . . ≤ 

≤ 𝑐2[𝐵𝑘𝑏𝑞𝑚𝑘𝑞(𝑡 − 𝜏)−𝑘 𝛼⁄ + 

+𝑘𝑞𝐵𝑘−1𝑏𝑞−1𝑚𝑘−1,𝑞−1(𝑡 − 𝜏)−(𝑘−1)/𝛼 + 

+
𝑘(𝑘 − 1)

2
𝑞(𝑞 − 1)𝐵𝑘−2𝑏𝑞−2𝑚𝑘−2,𝑞−2 × 

× (𝑡 − 𝜏)−(𝑘−2)/𝛼+. . . ]𝑒−𝑐0
′ (𝑡−𝜏)|𝜎|𝛼

≤ 

≤ 𝑐2𝐵𝑘𝑏𝑞𝑚𝑘𝑞(𝑡 − 𝜏)−𝑘 𝛼⁄ × 

× [1 +
𝑇1/𝛼

𝑏𝐵
𝑘𝑞

𝑚𝑘−1,𝑞−1

𝑚𝑘𝑞

+
1

2

𝑇2/𝛼

𝑏2𝐵2
× 

× 𝑘𝑞
𝑚𝑘−1,𝑞−1

𝑚𝑘𝑞

(𝑘 − 1)(𝑞 − 1)
𝑚𝑘−2,𝑞−2

𝑚𝑘−1,𝑞−1

+ ⋯ ] × 

× 𝑒−𝑐0
′ (𝑡−𝜏)|𝜎|𝛼

≤ 

≤ 𝑐2𝐵𝑘𝑏𝑞𝑚𝑘𝑞(𝑡 − 𝜏)−
𝑘
𝛼[1 +

𝛾𝑇1/𝛼

𝑏𝐵
(𝑘 + 𝑞) + 

+
𝛾2𝑇2/𝛼

1 ⋅ 2 ⋅ 𝑏2𝐵2
(𝑘 + 𝑞)2+. . . ]𝑒−𝑐0

′ (𝑡−𝜏)|𝜎|𝛼
≤ 

≤ 𝑐2𝐵1
𝑘𝑏1

𝑞
𝑚𝑘𝑞(𝑡 − 𝜏)−k/𝛼𝑒−𝑐0

′ (𝑡−𝜏)|𝜎|𝛼
= 

= 𝑐2𝐵1
𝑘𝑏1

𝑞
(𝑡 − 𝜏)−𝑘/𝛼𝑘𝑘/𝛼𝑞𝑞𝑒−𝑐0

′ (𝑡−𝜏)|𝜎|𝛼
, 

where 𝐵1 = 𝐵𝑒𝛾𝑇1/𝛼/(𝑏𝐵), 𝑏1 = 𝑏𝑒𝛾𝑇1/𝛼/(𝑏𝐵). 

Consequently,  

|𝑥𝑞𝐷𝑥
𝑘𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉)| ≤ 

≤ 𝑐2(2𝜋)−1𝐵1
𝑘𝑏1

𝑞
(𝑡 − 𝜏)−𝑘/𝛼𝑘𝑘/𝛼𝑞𝑞 × 

× ∫ exp{−𝑐0
′ (𝑡 − 𝜏)|𝜎|𝛼}𝑑𝜎

ℝ

≤ 

≤ 𝑐3𝐵1
𝑘𝑏1

𝑞
(𝑡 − 𝜏)−(𝑘+1)/𝛼𝑘𝑘/𝛼𝑞𝑞 , {𝑘, 𝑞} ⊂ ℤ+. 

Then  

|𝐷𝑥
𝑘𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉)| ≤ 

≤ 𝑐3𝐵1
𝑘(𝑡 − 𝜏)−(𝑘+1)/𝛼𝑘𝑘/𝛼inf

𝑞

𝑏1
𝑞

𝑞𝑞

|𝑥|𝑞
≤ 

≤ 𝑐4𝐵1
𝑘(𝑡 − 𝜏)−(𝑘+1)/𝛼𝑘𝑘/𝛼𝑒−𝑏0|𝑥|, 𝑥 ∈ ℝ, 𝑘 ∈ ℤ+, 

where 𝑏0 = 𝑏1
−1. The following statement is correct. 

Lemma 1. The function 𝐺, as a function of variable 𝑥, 

is an element of the space 𝑆1
1/𝛼

. For functions 𝐺 and its 

derivatives (the variable 𝑥), the inequality  

|𝐷𝑥
𝑘𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉)| ≤ 

≤ 𝑐4𝐵1
𝑘(𝑡 − 𝜏)−(𝑘+1)/𝛼𝑘𝑘/𝛼𝑒−𝑏0|𝑥|, 𝑘 ∈ ℤ+, 𝑥 ∈ ℝ, 

holds, constants 𝑐4, 𝐵1, 𝑏0 > 0 are independent of 𝑡 −
𝜏, 𝜒, 𝜉. 

The function  
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𝐺(𝑡 − 𝜏, 𝑥; 𝜒, 𝜉) = (2𝜋)−1 ∫ 𝑄(𝑡

ℝ

− 𝜏, 𝜒; 𝜉, 𝜎)𝑒−𝑖𝑥𝜎𝑑𝜎   (8) 

is a continuous function of the argument 𝑡 ∈ (𝜏, 𝑇] . 

Indeed, it follows from (7) that for 𝑡 ≥ 𝑡0 > 𝜏  true 

assessment  

|𝑄(𝑡 − 𝜏, 𝜒; 𝜉, 𝜎)| ≤ 𝑐exp{−(𝑡0 − 𝜏)𝑐0
′ |𝜎|𝛼}, 𝜎 ∈ ℝ. 

From this we already see that the integral (8) coincides 

uniformly in an arbitrary band {(𝑡, 𝜎):    𝜏 < 𝑡0 ≤ 𝑡 ≤ 𝑇,
𝜎 ∈ ℝ}, so the function 𝐺 is continuous at every point in 

the interval (𝜏, 𝑇]. Similarly, the differentiability of 𝐺 by 

the variable 𝑡 is proved. 

Let 𝐺0 = 𝐺(𝑡 − 𝜏, 𝑥; 𝜏, 0), 𝜑 ∈ 𝑊𝑀1

Ω1(ℝ) ⊂ 𝑆1
1. Taking 

advantage of the continuity property of the Fourier 

transform in 𝑆 spaces and the formula  

𝐹[𝜑 ∗ 𝐺0] = 𝐹[𝜑] ⋅ 𝐹[𝐺0] = 𝐹[𝜑] ⋅ 𝑄0, 
𝑄0 = 𝑄(𝑡 − 𝜏, 𝜏; 0, 𝜎) 

we find that  

𝜇 lim
𝑡→𝜏+0

𝐹[𝜑 ∗ 𝐺0] − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝐹[𝜑 ∗ 𝐺0] = 

= 𝐹[𝜑] (𝜇 lim
𝑡→𝜏+0

𝑄0 − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝑄0). 

Note that  

𝜇 lim
𝑡→𝜏+0

𝑄0 − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝑄0 = 1. 

Then  

𝜇 lim
𝑡→𝜏+0

𝐹[𝜑 ∗ 𝐺0] − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

𝐹[𝜑 ∗ 𝐺0] = 𝐹[𝜑]. 

Consequently,  

𝜇 lim
𝑡→𝜏+0

(𝜑 ∗ 𝐺0) − ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

(𝜑 ∗ 𝐺0) = 𝜑. 

Since, on the other hand,  

𝜑 ∗ 𝐺0 = ∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 0)𝜑(𝜉)𝑑𝜉

ℝ

, 

then for an arbitrary function 𝜑 ∈ 𝑊𝑀1

Ω1(ℝ) true value  

𝜇 lim
𝑡→𝜏+0

∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 0)𝜑(𝜉)𝑑𝜉

ℝ

− 

− ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 0)𝜑(𝜉)𝑑𝜉

ℝ

= 

= 𝜑(𝑥)  (9) 

at each point 𝑥 ∈ ℝ. Note that (9) implies a relation  

𝜇 lim
𝑡→𝜏+0

∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ

− 

− ∑

𝑚

𝑘=1

𝜇𝑘 lim
𝑡→𝑡𝑘

∫ 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ

= 𝜑(𝑥)  (10) 

at each point 𝑥 ∈ ℝ  for an arbitrary function  𝜑 ∈

𝑊𝑀1

Ω1(ℝ). 

From the above results we also get that       𝐺(𝑡 −
𝜏, 𝑥 − 𝜉; 𝜏, 𝜉), as a function of 𝑡, 𝑥 (for fixed 𝜏, 𝜉), is the 

solution of equation (1). Therefore,  𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉) 

can be taken as a function of 𝑉(𝑡, 𝑥; 𝜏, 𝜉). 

Let  

𝐼(𝑡, 𝜏, 𝑥) ≔ 

= ∫

𝑡

𝜏

𝑑𝜇 ∫ 𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

, (11) 

where 𝜑(𝑡, 𝑥)  is a function set to [0, 𝑇] × ℝ , 

continuous on 𝑡 , 𝜑(𝑡,⋅) ∈ 𝑊𝑀1

Ω1(ℝ)  for every    𝑡 ∈

[0, 𝑇] . The following statement gives the formula for 

applying the operator 𝜕/𝜕𝑡 to the integral (11). 

Lemma 2. The following formula holds: 
𝜕𝐼(𝑡, 𝜏, 𝑥)

𝜕𝑡
= 

= ∫

𝑡

𝜏

𝑑𝜇 ∫
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

+ 

+𝜑(𝑡, 𝑥).  (12) 

Proof. Consider the family of functions {𝐼ℎ(𝑡, 𝜏, 𝑥),
0 < ℎ < 𝑡 − 𝜏}, where  

𝐼ℎ(𝑡, 𝜏, 𝑥) = 

= ∫ 𝑑𝜇

𝑡−ℎ

𝜏

∫ 𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

≡ 

≡ ∫

𝑡−ℎ

𝜏

𝑔(𝑡, 𝜇, 𝑥)𝑑𝜇, 

𝑔(𝑡, 𝜇, 𝑥) = ∫ 𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

. 

Applying the Lopital rule of differentiation of integrals 

depending on parameters, we find that 

𝜕𝐼ℎ(𝑡, 𝜏, 𝑥)

𝜕𝑡
= ∫

𝑡−ℎ

𝜏

𝜕

𝜕𝑡
𝑔(𝑡, 𝜇, 𝑥)𝑑𝜇 + 𝑔(𝑡, 𝑡 − ℎ, 𝑥) = 

= ∫

𝑡−ℎ

𝜏

𝑑𝜇 ∫
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

+ 

+ ∫ 𝐺(ℎ, 𝑥 − 𝜉; 𝑡 − ℎ, 𝜉)𝜑(𝑡 − ℎ, 𝜉)𝑑𝜉

ℝ

. 

We prove that {𝐼ℎ , 0 < ℎ < 𝑡 − 𝜏} coincides at ℎ → 0 

with the function 𝐼(𝑡, 𝜏, 𝑥), and      {
𝜕𝐼ℎ

𝜕𝑡
, 0 < ℎ < 𝑡 −

𝜏} coincides with ℎ → 0 uniformly with respect to 𝑡 the 

right side (12). Then, using the corresponding theorem 

from the mathematical analysis, we obtain that the function 

𝐼(𝑡, 𝜏, 𝑥)  is the differential of 𝑡 , thus the equality (12) 

holds. 

From Lemma 1, the estimate follows  
|𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)| ≤ 

≤ 𝑐0(𝑡 − 𝜏)−1/𝛼exp{−𝑏0|𝑥 − 𝜉|}. 
Since sup

𝜇∈[0,𝑇]
|𝜑(𝜇, 𝜉)| ≤ 𝑐, ∀𝜉 ∈ ℝ, then  

∫|𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)| ⋅ |𝜑(𝜇, 𝜉)|𝑑𝜉

ℝ

≤ 

≤ �̃�(𝑡 − 𝜇)−1/𝛼 ∫ exp{−𝑏0|𝑥 − 𝜉|} 𝑑𝜉

ℝ

= 
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= 𝑐′(𝑡 − 𝜇)−1/𝛼 , 

𝑐′ = �̃� ∫ exp{−𝑏0|𝑦|}𝑑𝑦

ℝ

= 2�̃�0𝑏0
−1. 

Hence we get that  

|𝐼ℎ(𝑡, 𝜏, 𝑥) − 𝐼(𝑡, 𝜏, 𝑥)| ≤ 𝑐′ ∫

𝜏

𝑡−ℎ

(𝑡 − 𝜇)−1/𝛼𝑑𝜇 = 

=
ℎ1−1/𝛼

1 − 1/𝛼
,    1 − 1/𝛼 > 0,    𝛼 > 2, 

that is lim
ℎ→0

𝐼ℎ(𝑡, 𝜏, 𝑥) = 𝐼(𝑡, 𝜏, 𝑥). Let  

𝛽ℎ(𝑡, 𝑥) ≔ 

= ∫

𝑡−ℎ

𝜏

𝑑𝜇 ∫
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

, 

𝛽(𝑡, 𝑥) ≔ 

= ∫

𝑡

𝜏

𝑑𝜇 ∫
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

. 

Since  
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉) = (2𝜋)−1 × 

× ∫ 𝑎(𝜇, 𝜉; 𝜎)𝑄(𝑡 − 𝜇, 𝜇; 𝜉, 𝜎)𝑒−𝑖𝜎(𝑥−𝜉)𝑑𝜉

𝑡−ℎ

𝜏

, 

then, taking into account the method of estimating |𝐺| 
(see proof of Lemma 1) and the properties of the symbol-

function 𝑎 (see condition 2)), it is found that  

|
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)| ≤ 

≤ 𝑐0
′ (𝑡 − 𝜇)−1/𝛼exp{−�̅�|𝑥 − 𝜉|}, (13) 

where constants 𝑐0
′ , �̅� > 0 are independent of 𝜇, 𝜉; in 

this case, for the integrand              Λ: =
|𝑎(𝜇, 𝜉; 𝜎)𝑄(𝑡 − 𝜇, 𝜇; 𝜉, 𝜎)| the inequality holds  

Λ ≤ �̃�exp{𝑀(휀𝜎) − 𝑀(𝑎(𝑡 − 𝜇)𝜎)}, where 휀 > 0 is an 

arbitrarily fixed parameter. The convexity property of 𝑀 

implies inequalities  

exp{𝑀(휀𝜎) − 𝑀(𝑎(𝑡 − 𝜇)𝜎)} ≤ 

≤ exp{−𝑀((𝑎(𝑡 − 𝜇) − 휀)𝜎)} = 

= exp {−𝑀 (
𝑎

2
(𝑡 − 𝜇)𝜎)} ≤ exp{−𝑑0(𝑡 − 𝜇)|𝜎|𝛼}, 

if we set 휀 = 𝑎(𝑡 − 𝜇)/2. Further proof of (13) is carried 

out under the scheme prove estimates for the |𝐺|. 
Taking into account (13) and the inequality 

sup
𝜇,𝜉

|𝜑(𝜇, 𝜉)| ≤ 𝑐 find that  

∫ |
𝜕

𝜕𝑡
𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)| ⋅ |𝜑(𝜇, 𝜉)|𝑑𝜉

ℝ

≤ 

≤ 𝐿(𝑡 − 𝜇)−1/𝛼 , 
where constant 𝐿 > 0  is independent of 𝑡, 𝜇, 𝑥 . It 

follows that  

|𝛽ℎ(𝑡, 𝑥) − 𝛽(𝑡, 𝑥)| ≤ 𝐿 ∫

𝑡

𝑡−ℎ

(𝑡 − 𝜇)−1/𝛼𝑑𝜇 = 

=
𝐿ℎ1−1/𝛼

1 − 1/𝛼
⟶ 0 

at ℎ → 0 uniformly with respect to 𝑡. 

From the results given in Lemma 1, it follows that for 

𝐺(ℎ, 𝑥 − 𝜉; 𝑡 − ℎ, 𝜉) the estimate is correct:  

|𝐺(ℎ, 𝑥 − 𝜉; 𝑡 − ℎ, 𝜉)| ≤ 𝑐ℎ−1/𝛼exp{−𝑏0|𝑥 − 𝜉|}, 

which is uniform with respect to 𝑡. Hence, from relation 

(10) (which should be considered 𝜇 = 1, 𝜇1 =. . . = 𝜇𝑚 =
0) and the continuity properties of functions 𝜑(𝑡, 𝑥) by the 

variable 𝑡 implies that  

∫ 𝐺(ℎ, 𝑥 − 𝜉; 𝑡 − ℎ, 𝜉)𝜑(𝑡 − ℎ, 𝜉)𝑑𝜉

ℝ

⟶ 𝜑(𝑡, 𝑥),  

ℎ → 0, 
is uniform with respect to 𝑡. This proved that the family 

of functions {𝜕𝐼ℎ/𝜕𝑡, 0 < ℎ < 𝑡 − 𝜏}  coincides with 

ℎ → 0 uniformly respect to 𝑡 to the right side (12). The 

proof of the lemma is complete. 

Further operator 𝐴 in equation (1) we understand as an 

operator acting from the space 𝑋  in 𝐾(ℝ) , where the 

symbol 𝑋  denote the space consisting of functions 𝜓 ∈

𝑊𝑀1

Ω1(ℝ) with norm ||𝜓|| == sup
𝑥∈ℝ

|𝜓(𝑥)|. 

Lemma 3. 1. Let 𝜑(𝑡, 𝑥) , (𝑡, 𝑥) ∈ [0, 𝑇] × ℝ , be a 

function, continuous on the variable 𝑡,          𝜑(𝑡,⋅) ∈

𝑊𝑀1

𝛺1(ℝ). The following formula holds: 

𝐴𝐼(𝑡, 𝜏, 𝑥) = ∫ 𝑑𝜇

𝑡

𝜏

∫ 𝐴𝐺(𝑡 − 𝜇, 𝑥

ℝ

− 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉 . (14) 

2. The estimate for 𝐴𝐺 is correct  

|𝐴𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)| ≤ 

≤ 𝑐(𝑡 − 𝜇)−1/𝛼exp{−𝑎|𝑥 − 𝜉|}, 𝑡 > 𝜇 ≥ 0, 
constant 𝑐, 𝑎 > 0 is independent of 𝑡, 𝜇. 

The proof of Lemma 3 is carried out according to the 

scheme of proof of Lemma 2. 

On the basis of Lemmas 2, 3, we conclude that with the 

above restrictions on the function 𝜑 the following formula 

holds:  

𝐿𝐼(𝑡, 𝜏, 𝑥) = ∫ 𝑑𝜇

𝑡

𝜏

× 

× ∫ 𝐿𝐺(𝑡 − 𝜇, 𝑥 − 𝜉; 𝜇, 𝜉)𝜑(𝜇, 𝜉)𝑑𝜉

ℝ

+ 𝜑(𝑡, 𝑥), 

the 𝐿𝐺 function satisfies the inequality  

|𝐿𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉)| ≤ 

≤ 𝑐(𝑡 − 𝜏)−1/𝛼exp{−𝑎|𝑥 − 𝜉|}, (15) 

where 𝑐, 𝑎 > 0 is independent of 𝑡, 𝜏, 𝑡 > 𝜏. 

Let us now proceed to constructing a fundamental 

solution of a multi-point problem for equation (1); this 

solution looking as the sum of:  

𝑍(𝑡, 𝑥; 𝜏, 𝜉) = 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉) + Γ(𝑡, 𝑥; 𝜏, 𝜉), (16) 
(𝑡, 𝑥) ∈ Π′

𝑇 , where  

Γ(𝑡, 𝑥; 𝜏, 𝜉) = 

= ∫ 𝑑𝜇

𝑡

𝜏

∫ 𝐺(𝑡 − 𝜇, 𝑥 − 𝜂; 𝜇, 𝜂)Φ(𝜇, 𝜂; 𝜏, 𝜉)𝑑𝜂,

ℝ

(17) 

𝐺 is a function defined earlier. We choose the function 

Φ(𝑡, 𝑥; 𝜏, 𝜉)  so that 𝑍 , as a function of 𝑡, 𝑥 , satisfies 

equation (1). Applying the operator 𝐿 to 𝑍 and taking into 

account formulas (12), (14), we find that this will be the 

case if and only if  

Φ(𝑡, 𝑥; 𝜏, 𝜉) = 𝐾(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉) + 

+ ∫ 𝑑𝜇

𝑡

𝜏

∫ 𝐾(𝑡 − 𝜇, 𝑥; 𝜇, 𝜂)Φ(𝜇, 𝜂; 𝜏, 𝜉)𝑑𝜂,

ℝ

  (18) 
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where 𝐾(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉) = −𝐿𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉) . The 

series  

Φ(𝑡, 𝑥; 𝜏, 𝜉) = ∑

∞

𝑚=1

𝐾𝑚(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉), (19) 

𝐾1 = 𝐾,   𝐾𝑚(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉) = 

= ∫ 𝑑𝛽

𝑡

𝜏

∫ 𝐾(𝑡 − 𝛽, 𝑥; 𝛽, 𝜂)𝐾𝑚−1(𝛽 − 𝜏, 𝜂; 𝜏, 𝜉)𝑑𝜂

ℝ

, 

is a formal solution of the integral equation (18). We 

examine series (19) for absolute and uniform convergence 

at 0 < 𝛿0 ≤ 𝑡 − 𝜏 ≤ 𝑇. To justify the convergence of this 

series, let us evaluate the kernels of 𝐾𝑚. Note that |𝐾1| =
|𝐿𝐺| holds (15). To evaluate the kernel 𝐾2 , we use the 

following auxiliary statement. 

Let  

𝐼(𝑥, 𝜉) ≔ ∫ exp{−𝑎(|𝑥 − 𝑦| + |𝑦 − 𝜉|)} 𝑑𝑦

ℝ

, 𝑎 > 0. 

For integral 𝐼 true inequality  

𝐼(𝑥, 𝜉) ≤ 𝑐(휀)exp{−𝑎(1 − 휀)|𝑥 − 𝜉|}, (20) 

where 0 < 휀 < 1  is a fixed parameter, and 𝑐(휀) =
2𝑎−1휀−1. Indeed, consider the function 𝜑(𝑦) = |𝑥 − 𝑦| +
|𝑦 − 𝜉|. We are convinced that it satisfies the inequality 

𝜑(𝑦) ≥ |𝑥 − 𝜉|. Fixed    0 < 휀 < 1. Then  

𝐼(𝑥, 𝜉) = 

= exp{−𝑎(1 − 휀)|𝑥 − 𝜉|} ∫ exp{−𝑎휀𝜑(𝑦)}𝑑𝑦

ℝ

= 

= exp{−𝑎(1 − 휀)|𝑥 − 𝜉|} ∫ exp{−𝑎휀|𝑦 − 𝜉|} 𝑑𝑦

ℝ

= 

= 𝑐(휀)exp{−𝑎(1 − 휀)|𝑥 − 𝜉|}, 
where 𝑐(휀) = 2𝑎−1휀−1. Taking into account (15) and 

(20), we estimate the kernel 𝐾2. So,  

|𝐾2(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ ∫

𝑡

𝜏

𝑑𝛽 × 

× ∫ |𝐾(𝑡 − 𝛽, 𝑥; 𝛽, 𝜂)| ∙ |𝐾1(𝛽 − 𝜏, 𝜂; 𝜏, 𝜉)|𝑑𝜂

ℝ

≤ 

≤ 𝑐2 ∫ (∫(𝑡 − 𝛽)−𝜆(𝛽 − 𝜏)−𝜆 ×       

ℝ

𝑡

𝜏

× 𝑒−𝑎(|𝑥−𝜂|+|𝜂−𝜉|)) 𝑑𝛽 ≤ 

≤ 𝑐2 ∫

𝑡

𝜏

(𝑡 − 𝛽)−𝜆(𝛽 − 𝜏)−𝜆𝑑𝛽 × 

× ∫ 𝑒−𝑎(|𝑥−𝜂|+|𝜂−𝜉|)𝑑𝜂

ℝ

≤ 

≤ 𝑐2𝑐(휀)(𝑡 − 𝜏)1−2𝜆𝐵(1 − 𝜆, 1 − 𝜆) × 

× exp{−𝑎(1 − 휀)|𝑥 − 𝜉|},    𝜆 = 1/𝛼;   (21) 

here used the formula  

∫

𝑏

𝑎

(𝑡 − 𝑎)𝑥−1(𝑏 − 𝑡)𝑦−1𝑑𝑡 = 

= (𝑏 − 𝑎)𝑥+𝑦−1𝐵(𝑥, 𝑦),    Re  𝑥 > 0,    Re  𝑦 > 0, 

𝐵(⋅,⋅) is a beta-function. Taking into account (21), we 

estimate the kernel 𝐾3:  

|𝐾3(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ ∫

𝑡

𝜏

𝑑𝛽 × 

× ∫ |𝐾(𝑡 − 𝛽, 𝑥; 𝛽, 𝜂)| ∙ |𝐾2(𝛽 − 𝜏, 𝜂; 𝜏, 𝜉)|𝑑𝜂

ℝ

≤ 

≤ 𝑐3𝑐(휀)𝐵(1 − 𝜆, 1 − 𝜆) × 

× ∫(𝑡 − 𝛽)−𝜆(𝛽 − 𝜏)1−2𝜆 ×  

𝑡

𝜏

× (∫ 𝑒−𝑎(|𝑥−𝜂|+(1− )|𝜂−𝜉|)𝑑𝜂

ℝ

 ) 𝑑𝛽 

Introduce: 𝜑(𝜂) = |𝑥 − 𝜂| + |𝜂 − 𝜉|. Then  

|𝐾3(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ 𝑐3𝑐(휀)𝐵(1 − 𝜆, 1 − 𝜆) × 

× ∫(𝑡 − 𝛽)−𝜆(𝛽 − 𝜏)1−2𝜆𝑑𝛽

𝑡

𝜏

× 

× ∫ |exp{−𝑎(1 − 휀)𝜑(𝜂) − 𝑎휀|𝑥 − 𝜂|}𝑑𝜂

ℝ

 

Since 𝜑(𝜂) ≥ |𝑥 − 𝜉|, then  

∫

ℝ

𝑒−𝑎(1− )𝜑(𝜂)−𝑎 |𝑥−𝜂|𝑑𝜂 ≤ 𝑐(휀)𝑒−𝑎(1− )|𝑥−𝜉|, 

where 𝑐(휀) = ∫
ℝ

exp{−𝑎휀|𝑥 − 𝜂|}𝑑𝜂 = 2(𝑎휀)−1 . In 

addition,  

∫

𝑡

𝜏

(𝑡 − 𝛽)−𝜆(𝛽 − 𝜏)1−2𝜆𝑑𝛽 =

= (𝑡 − 𝜏)2−3𝜆𝐵(1 − 𝜆, 2 − 2𝜆). 
Therefore, |𝐾3| is estimated as follows:  

|𝐾3(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ 

≤ 𝑐3𝑐2(휀)𝐵(1 − 𝜆, 1 − 𝜆)𝐵(1 − 𝜆, 2 − 2𝜆) × 

× (𝑡 − 𝜏)2−3𝜆exp{−𝑎(1 − 휀)|𝑥 − 𝜉|}. 
Using the method of mathematical induction prove that  

𝐾𝑚(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ 𝑐𝑚𝑐𝑚−1(휀) × 

× 𝐵(1 − 𝜆, 1 − 𝜆)𝐵(1 − 𝜆, 2 − 2𝜆) × 

× 𝐵(1 − 𝜆, 3 − 3𝜆) × … × 

× 𝐵(1 − 𝜆, (𝑚 − 1) − (𝑚 − 1)𝜆)(𝑡 − 𝜏)𝑚−1−𝑚𝜆 × 

× exp{−𝑎(1 − 휀)|𝑥 − 𝜉|}, 𝑚 ≥ 2. 
Taking into account formulas  

𝐵(𝑧, 𝜔) = Γ(𝑧)Γ(𝜔)/Γ(𝑧 + 𝜔) 

(Γ  is a gamma-function), Γ(1 + 𝑥) = 𝑥Γ(𝑥)  we find 

that  

𝐵(1 − 𝜆, 1 − 𝜆)𝐵(1 − 𝜆, 2 − 2𝜆)B(1 − λ, 3 − 3λ) … 

× 𝐵(1 − 𝜆, (𝑚 − 1) − (𝑚 − 1)𝜆) = 

=
Γ(1 − 𝜆)Γ(1 − 𝜆)Γ(1 − 𝜆)Γ(2 − 2𝜆)

Γ(2(1 − 𝜆))Γ(3(1 − 𝜆)
× 

×
Γ(1 −  λ)Γ(3 −  3λ) … Γ((𝑚 − 1)(1 − 𝜆))

Γ(4(1 − 𝜆)) … Γ(𝑚(1 − 𝜆))
= 

= Γ(1 − 𝜆)
Γ𝑚(1 − 𝜆)

Γ(𝑚(1 − 𝜆))
,   𝑚 ≥ 2. 

Thus, for the series ∑∞
𝑚=0 𝐾𝑚, the following estimates 

hold:  
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| ∑

∞

𝑚=1

𝐾𝑚(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ ∑

∞

𝑚=1

|𝐾𝑚(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉)| ≤ 

≤ 𝑐(𝑡 − 𝜏)−𝜆𝑒−𝑎|𝑥−𝜉| + 𝑐−1(휀)Γ(1 − 𝜆)(𝑡 − 𝜏)−𝜆 × 

× ∑

∞

𝑚=2

𝑐𝑚𝑐𝑚(휀)(𝑡 − 𝜏)𝑚(1−𝜆) × 

×
Γ𝑚(1 − 𝜆)

Γ(𝑚(1 − 𝜆))
𝑒−𝑎(1− )|𝑥−𝜉| ≤ 

≤ 𝑐(𝑡 − 𝜏)−𝜆𝑒−𝑎|𝑥−𝜉| + 𝑐−1(휀)Γ(1 − 𝜆)(𝑡 − 𝜏)−𝜆 × 

× ∑

∞

𝑚=2

𝑐𝑚𝑐𝑚(휀)𝑇𝑚(1−𝜆)
Γ𝑚(1 − 𝜆)

Γ(𝑚(1 − 𝜆))
𝑒−𝑎(1− )|𝑥−𝜉|. 

Because of the Stirling formula Γ(𝑥) =

√2𝜋 𝑒𝑥𝑥𝑥−
1

2𝑒
𝜃

12𝑥, 𝑥 > 0, 0 < 𝜃 < 1,we have that  
Γ𝑚(𝜔0)

Γ(𝑚𝜔0)
≤ 𝛽0

𝜃0
𝑚

𝑚𝑚𝜔0
, 𝛽0 =

1

√2𝜋
,    

𝜃0 = 2√2𝜋𝑒, 𝜔0 = 1 − 𝜆. 
The last estimate implies the convergence of a series  

∑

∞

𝑚=2

𝛽𝑚
Γ𝑚(1 − 𝜆)

Γ(𝑚(1 − 𝜆))
, 𝛽 = 𝑐 ⋅ 𝑐(휀)𝑇1−𝜆. 

Since, the series ∑∞
𝑚=1 𝐾𝑚  for 0 < 𝛿0 ≤ 𝑡 − 𝜏 ≤ 𝑇 

coincides absolutely and evenly, and its sum is a function 

of Φ(𝑡, 𝑥; 𝜏, 𝜉) for 𝑡 > 𝜏 is a continuous function of the 

arguments 𝑥, 𝜉. Set 휀 = 1/2; then inequality holds for Φ  
|Φ(𝑡, 𝑥; 𝜏, 𝜉)| ≤ 

≤ 𝑑0(𝑡 − 𝜏)−𝜆exp {−
𝑎

2
|𝑥 − 𝜉|}.   (22) 

This estimate ensures the convergence of integrals (17), 

(18). It follows that the integral in (18) is equal  

∑ ∫ 𝑑𝜇

𝑡

𝜏

∫ 𝐾(𝑡 − 𝜇, 𝑥; 𝜇, 𝜂)𝐾𝑚(𝜇 − 𝜏, 𝜂; 𝜏, 𝜉)𝑑𝜂 =

ℝ

∞

𝑚=1

 

= ∑

∞

𝑚=1

𝐾𝑚+1(𝑡 − 𝜏, 𝑥; 𝜏, 𝜉). 

So, Φ is the solution of equation (18). 

Recall that the correct estimate for |𝐺| is  

|𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉)| ≤ 

≤ 𝑐(𝑡 − 𝜏)−𝜆exp{−𝑎|𝑥 − 𝜉|},   𝜆 = 1/𝛼,   (23) 

where constants 𝑐, 𝑎 > 0 are independent of 𝑡, 𝜏 (see 

Lemma 1). On the basis of inequalities (23), (22), (20), we 

estimate Γ; while in (20) put 휀 = 1/2. So,  

|Γ(𝑡, 𝑥; 𝜏, 𝜉)| ≤ ∫ 𝑑𝜇

𝑡

𝜏

× 

× ∫ |𝐺(𝑡 − 𝜇, 𝑥 − 𝜂; 𝜇, 𝜂)| ∙ |Φ(𝜇, 𝜂; 𝜏, 𝜉)|𝑑𝜂

ℝ

≤ 

≤ 𝑐 ∫(𝑡 − 𝜇)−𝜆(𝜇 − 𝜏)−𝜆 ×

𝑡

𝜏

×  (∫ 𝑒−𝑎|𝑥−𝜂|−
𝑎
2

|𝜂−𝜉|𝑑𝜂

ℝ

) 𝑑𝜇 ≤ 

≤ �̃�(𝑡 − 𝜏)1−2𝜆exp {−
𝑎

4
|𝑥 − 𝜉|}.   (24) 

From estimate (24) implies that for any continuous 

bounded on ℝ function 𝜑 is  

∫|Γ(𝑡, 𝑥; 0, 𝜉)| ⋅ |𝜑(𝜉)|𝑑𝜉

ℝ

≤ 𝑐̃𝑡1−2𝜆 × 

× ∫ exp {−
𝑎

4
|𝑥 − 𝜉|} 𝑑𝜉

ℝ

= 𝑑1𝑡1−2𝜆,   1 − 2𝜆 > 0. 

From this we already get that at every point 𝑥 ∈ ℝ the 

boundary relation holds  

lim
𝑡→+0

∫ Γ(𝑡, 𝑥; 0, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ 

= 0. 

On the basis of the obtained results, we claim that the 

function  

𝑍(𝑡, 𝑥; 𝜏, 𝜉) = 𝑉(𝑡, 𝑥; 𝜏, 𝜉) + Γ(𝑡, 𝑥; 𝜏, 𝜉),    
𝑉(𝑡, 𝑥; 𝜏, 𝜉) = 𝐺(𝑡 − 𝜏, 𝑥 − 𝜉; 𝜏, 𝜉), 

is a fundamental solution of the nonlocal 𝑚-point in 

time problem for equation (1), and the function  

𝑢(𝑡, 𝑥) = 

= ∫ V(𝑡, 𝑥; 0, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ 

+ ∫ Γ(𝑡, 𝑥; 0, 𝜉)𝜑(𝜉)𝑑𝜉

ℝ 

= 

= 𝑢1(𝑡, 𝑥) + 𝑢2(𝑡, 𝑥), (25) 

(𝑡, 𝑥) ∈ (0, 𝑇] × ℝ, 𝜑 ∈ 𝑊𝑀1

Ω1(ℝ), is the solution of this 

problem at 𝜏 = 0. We summarize the results obtained in 

the form of the following statement. 

Theorem. 𝑚 -point problem for equation (1) with 

parameter 𝜏 = 0 is solvable in class 𝑋, with the solution 

given by formula (25); 𝑢(𝑡, 𝑥) is a continuous function of 

𝑥 bound for ℝ for every  𝑡 ∈ (0, 𝑇]. 
Conclusions. A solution of nonlocal in time multi-point 

problem for evolution equation with a pseudodifferential 

operator constructed at variable symbols in a class of 

bounded continuous on ℝ  functions is established. The 

definitions and properties of the fundamental solution of 

this problem are given. 
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