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Visualization of the decisions of applied problems
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Abstract. The article is devoted to distributed simulation of visualization of decision vectors of applied problems on the basis of
schemes of increased accuracy order. The higher computational speedup in comparison with the finite-difference approach is
illustrated by analytical solutions that allow simultaneous and parallel computations in all temporary layers. It is shown that the most
promising approach to mathematical simulation of applied problems is the one that is based on numerical-analytical solutions.
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Target setting. Significant computation speedup of
applied problems is achieved by means of finite-
difference schemes due to the parallelization effect.
However, the numerical-analytical algorithms for solving
applied problems deserve special attention. Greater
computational speedup compared to the finite difference
approach can be achieved through analytical solutions
that allow simultaneous and parallel computing for all
temporary layers and, in this case, do not use combined
memory. Thus, the most perspective approach to the
mathematical simulation of applied problems should be
the one that is based on numerical-analytic solutions.

Effective means during the processing of heat and
mass transfer tasks in metallurgical industry are
considered to be the application of parallel computing
technologies on distributed cluster-type systems that have
relatively low cost and are easily scaled both by the
number of processors and by the amount of RAM [2, 12].
Consequently, the distributed simulation of the vector
visualization of applied problems solutions on the basis of
schemes of the raised accuracy order is an essential and
relevant task.

Analysis of recent research and publications. Heat
and mass transfer processes of metallurgical production
should be considered as large systems [8-10]. Today,
solving complex, large-scale tasks requires powerful
computers and is characterized by ‘parallel’ term, that is,
there are parallel computers, computing systems, parallel
computing methods, etc. [3 — 5]. In broad terms, this term
entered almost immediately after the appearance of the
first computers, or rather, after realizing the fact that the
computers created were not able to solve, during the
optimal term, many practical tasks. The emergence in
computing systems of new and expensive communication
tools, a more advanced elemental base, stimulated the
development of high-performance computations based on
multiprocessor computing systems [1, 7].

In addition, the class of problems in question is usually
solved through set of finite-difference equations, which
essence is to replace the derivatives by difference
relations. In this case, from the numerical algorithm point
of view, the solution of finite-difference equations is
divided into explicit and implicit schemes [11]. In an
explicit scheme, the values of the desired function are
determined sequentially, layer by layer. However, despite
the apparent simplicity and ease of computing, such a
scheme has one significant drawback. If the size of the

grid | > h, the rounding errors can become so large that
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the resulting solution becomes meaningless. It is known
that for the explicit scheme there must be met the

condition: 1/h?<0,5. But the following empirical rule

is fair: if we reduce the values of | and h, then the error of
approximation of partial derivatives with finite-difference
derivatives also decreases. However, the smaller the grid,
the more computations need to be made, which means
larger rounding errors. Implicit circuits allow to compute
with a large step without significantly degrading
accuracy, but such an approach requires a larger amount
of computation.

The considered analysis shows that the solution
methods of this class of problems should be not only
diverse, but also must combine quantitative assessments
with the qualitative analysis possibilities. Nowadays,
there have been some trends in development of
numerical-analytic methods with complex logical
structure, but unlike the piecewise difference methods
they are of a higher accuracy order and with possibility of
making algorithms with adaptation according to the
approximation methods [13, 14]. In terms of computation,
this approach is somewhat lengthy, but it shows a peculiar
benchmark for comparison with other practical methods.
At the same time, given that the computational
experiment is carried out on a multiprocessor system, it
can be asserted that the circumstance that constrained the
development of the numerical-analytical approach is now
losing its relevance. In this regard, this research has
further developed the idea of making schemes of
increased accuracy order on the basis of a numerical-
analytical approach to the computations of a wide class of
the studied problems.

Unresolved parts of the issues. Numerical solution of
a typical problem of metallurgical thermophysics,
especially multidimensional and non-stationary, generates
a huge amount of data. Therefore, the systematizing and
interpreting  this information, giving it physical
characteristics gains special importance. For example,
plotting or isolating is a fairly common way of presenting
information. However, the service packs used are based
on the data arrays processing, arranged in relation to
nodes in the grid area. As a rule, they do not apply a priori
information about construction methods. This can be
explained only by the fact that in practice of using
methods of finite-difference approximation there is a
stable opinion about the change uncertainty of the desired
function in the intervals between nodal points of net area.
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According to the authors [6, 15], simple ideas that
underlie the primitive replacement of derivatives by finite
differences can not be successful without analyzing and
taking into account specific properties of solutions of a
particular class of problems. While processing the
computational algorithm it is necessary to use a priori
information about the problem, and first of all, about its
membership to one or another class of functions
smoothness. The above-mentioned approach became the
basis for distributed wvectors simulation of applied
problems. This research illustrates its importance through
example of the initial-boundary problem.

The purpose of the research is to develop a numerical
solution to the problem of metallurgical thermophysics
based on the application of multiprocessor systems.
Particular attention should be paid to numerical-analytical
algorithms for solving the set problems. Higher
computation speedup comparing with the finite difference
approach can be accomplished through the analytical
solutions that allow simultaneous and parallel computing
for all temporary layers without use of combined
memory. To offer a package of application programs
(PPP) that implements the solution of coefficient inverse
heat conduction problems by mathematical simulation for
carrying out computational experiments, based on the
application of a multiprocessor computer system. The
PPP should be developed covering requirements of
object-oriented programming. At the same time, the
solution of the coefficient problems reduces to the
problems of optimal control, computing algorithms of
which include in the package. Also, the PPP must include
a data visualization block.

Main research results. The solution of the boundary
value problem for the heat conduction equation is
considered. Let us find a function that is described by the
equation of the form:

u_du
o o2
herein
u(0,x) =0,u(t,0)=1,ut,2)=1., (2

Let us make a uniform grid, the step of which,
respectively:

Dx1 =0,01; Dt1 = 0,001, (3)

Let a sequential algorithm be implemented by an
implicit scheme by a sweep method. Then after the
sampling of equation (1) the following system of linear
algebraic equations (SLAE) is obtained:

Dtl
U,,-U0,, = (Dxlz j[u U -0, ]

at the same time, the numbers of internal network

nodes correspond to the expression: p=1,2m-1; desired

network functions U, , =1, U, , =1, U_; values of
the variable U 0p , are taken from the previous temporary

layer.
The system of linear algebraic equations (4) has a
three-diagonal structure, particularly:
CU,,-U,,+DU_ ,,=f.()

herein
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Dt1/ Dx1?
(1+ Dt1/ Dxlz)’
f — _UOpyl
P (1+ Dt1/ Dx12) '

:Bp:

. (6)

if p=1,2m-1

A fairly simple and convenient sequential method for
solving the difference boundary value problem (4) - (6) is
one of the methods for exclusion of unknown Gauss
scheme and is called the sweep method. A small number
of arithmetic operations, as well as a rather weak
sensitivity to computational errors, make the sweep
method a very convenient means for implementing
sequential computational algorithms.

Here are several aspects of computational nature in
computing simulation. When solving non-stationary
problems by implicit (or explicit) methods the
computations are always carried out according to the
emporary layers consistently. If all the information about
the adjacent layer is located in the RAM, then no special
complications arise. However, if the problem is so big
that it does not meet the stated above condition, then there
should be used the combined memory. The information
transfer time from slow memory to the operational is
proportional to the number of points in the layer. The task
solution finding time on the next layer is also proportional
to the number of points in the layer. But one operation
execution period is much less than the average time value
of sending a unit of information from the slow memory to
the operational one. Therefore, with such a computation,
most of the time is spent on the transfers’ organization,
that is, spent nonproductively. Hence, the following
question arises: can there be any increase of the efficiency
of using computer memory when solving a given class of
problems? And if there is a possibility, then how? The
answers to the questions can be obtained with a more
detailed research of the graph algorithm problem solution.
Firstly, it is obvious that such a problem can be solved by
a parallel processor. And secondly, the features of the
parallelization of the problem should be such that the time
of the corresponding calculations and data processing in
the RAM becomes greater than the time spent on data
transfer. Finally, in order to eliminate the use of combined
memory in solving the problem (1) for such an equation
there must either be applied a numerical-analytical
approach, or one of the methods of mathematical physics,
for example, Laplace's integral transformation in time.

Numerical-analytical approach. For each nod

(X=X, ) of the network area the solution of a given

equation is found in the analytic functions class that allow
its representation in the form of a Taylor series method,
that is

u p+ey 1 (t’ X) = Z&‘:U p,n+l (t) ) (7)

n=0
herein normalized variable
X—X
£, = P e[-1,1] (8)
X =X

p+1 p
unknown Taylors components of the desired function

u are defined as follows:
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(Xp+1 - Xp)n o"u
n! OX" [x=x,
After substituting the series (9) into the relation (7),
using the indeterminate coefficients method, we obtain a
system of differential equations in the form of a ordinary
differential equations system (ODES). Considering the
obtained relation as recurrent by value of n, we can write
the corresponding consequences. Then the equation (3.1)

general solution gets the following form:

} , (10)

Dx1%,., 0"u,,(t
u p+égs (X!t) = {u pl (t) + x1 n p,l( )
uP,Z}

) P
an

It should be noted that the computing system can be
used to increase the amount of available memory. For
instance, with an increase by N times the number of
processors, the available memory increases the same. This
circumstance becomes very significant when solving
multidimensional problems when there are problems with
the computing environment memory (swapping, etc.).
Therefore, for a more complete analysis of the developed
multiprocessor system efficiency, the computational
experiments were carried out in the simulation of
multidimensional problems.

Consider the peculiarity of constructing splitting
schemes for distributed simulation of applied problems.
To have the ability of switching to significantly more
complex algorithms, it is necessary to put the developed
methodology on a fundamental theoretical basis. To do
this, difference schemes of splitting can be used as one of
the most important means for modeling multidimensional
nonstationary problems of mathematical physics. The
difference scheme of splitting is one of the important
means of computing multidimensional non-stationary
problems of mathematical physics. The point is that the
difference schemes, where the number of arithmetic
operations required for the transition between temporary
layers is proportional to the number of unknown values of
the desired functions, is called economic. It is known that
the computation under explicit schemes is very simple.
The quality of arithmetic operations in them is not subject
to improvement. However, being economical, an explicit
scheme is stable only with its strict limitation on the step
of the grid in time. The difference schemes of splitting
based on the set of not quite equivalent to each other
sentences, but with a stereotypical goal to reduce the
three-dimensional propagation problem of the domain of
dependence on the sequence of schemes include unknown
variables, which act alternately in coordinate directions
and reduce the solution of such problems to scalar sweep
method. Therefore, the difference scheme of splitting is
considered an economic and, of course, stable, that is, as
if combining the benefits of explicit and implicit schemes.

Moreover, there should be noted that the greatest effect
from the use of up-to-date systems for processing
information with a high level of parallelism is likely to be
achieved when the described schemes are applied to
perform matrix calculations in linear algebra or in
methods for solving differential equations with partial
derivatives. If there was an opportunity to use one

. (9)

u p,n+l (t) =
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processor on one computation node during the solution of
the mentioned equations, then one can perform
computations in all nodes in parallel and simultaneously.
Surely, it is unreal. A typical finite-difference grid is
composed of 50x50 or 100x100 nodes, so its computation
in such architecture requires a system with 2,500 or
10,000 processors.

The use of numerical-analytical solutions allows for
each temporary layer to perform computations
simultaneously at any time, and, consequently, it does not
require organization of information transfer from slow
memory to the operational, which means, the
interprocessor data exchange is excluded. This explains
the significant solution speedup of the problems that were
simulated by numerical-analytic methods.

Today, there are various software products, often
called packages or software complexes. This research
considers the applications package, intended for
thermophysical experiments processing by inverse
methods. The main purpose of the PPP making is to
provide practical assistance to the researcher in all stages
of the thermal-physical experimentation using inverse
methods by a personal computing cluster.

Hence, the class of inverse thermal problems of
metallurgical  thermophysics is examined. Their
formulation is done in terms of "cause-effect"
relationship. According to the accepted model, the
boundary conditions and their parameters, initial
conditions, thermophysical properties and etc, are related
to causal characteristics of the heat exchange process. In
this interpretation, the establishment of causal
relationships is the goal of direct heat transfer problems.
Conversely, if certain information about the temperature
field needs to be restored to causal characteristics, then
we have one or another formulation of inverse heat
transfer problems (IHTP) belonging to the class of
problems that are incorrect from the positions of
Hadamard.

The identification method of heat conduction equations
according to the data of the thermophysical experiment is
based on the interpretation of IHTP as the optimal control
problems [5]. In this case, the mathematical model (MM)
is considered to be guided by the set of input parameters
given by the vector R. These include the coefficients of
the heat equation. For given values of the components of
the vector R, the solution of the heat equation with initial
and boundary conditions is not only the function of spatial
coordinates and time, but also the input parameters.
Assuming that at certain moments of time the thermal
state of the sample, and some parameters of the vector R
are unknown, we arrive at the problem of optimal control.
Introduction of the functional allows us to formulate the
method of identifying the algorithm of IHTP solution.
The MM’s structure in this case is reduced to two
controlled models:

- temperature (model 1),

- streaming (model 2).

Such a statement allowed to divide the control
parameters for the vector R. Thus, by model 1 it is
possible to involve control in the form of thermal
conductivity coefficient, and the model 2 - the of thermal
conductivity coefficient.
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Due to the chosen method of approximation, the
solution of the heat equation (direct method) is reduced to
standard computational procedures - the sweep method
and use of differential effects of analytic solutions on the
nodes of the grid, provided that p :LQTX_L m, eZ

The domain of vector R parameters admissible values
in MM is selected on the basis of a priori information
about the model. In the PPP, this procedure is formalized
by introducing several conditions in the algorithm. The
methodology of the approach is reduced to the
construction of a minimizing functional sequence,
particularly:

IR)=(T,-T,y, 1)

wherein T., T, are the temperature values, they are
known from the experiment and computation obtained as
a result of the MM solutions.

In this formulation the IHTP coefficient computation is
reduced to the problem of optimal control, which solution
algorithm is implemented in this PPP.

The experimental data visualization results are shown
in Fig. 1.

The visualization results analysis demonstrate that the
isolines are smoothed out, which most accurately reflects
the computational algorithm. Thus, when making service
programs for processing and issuing results to print in the
form of charts and isolines, the proposed approach allows
to minimize work on input and output data of the studied
problems class.

Since the values of the base nodes are arranged in a
grid area, then for each temporary layer, the operations
shown in formula (10) are not related to each other.
Therefore, the computations when making graphs or
isolines can be performed in parallel and simultaneously.

The PPP is used for planning and processing of the
thermophysical experiment results by the inverse
methods. The developed algorithms used in the PPP can

quite simply be rebuilt for the solution of other coefficient
and boundary IHTPs.
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Fig. 1. Processing of the test problem solution results in graphs

Conclusions. In this research, the approach to the
numerical-analytical concept of visualizing vectors in
solutions allows us to obtain any necessary data for
making smooth graphs or isolines on the corresponding
grids. The algorithm maximum parallel forms are a
subject of special interest, since they determine the
minimum possible time for visualization algorithm
implementation.

For the computing experiments based on application of
a multiprocessor computing system there was developed a
package of applied programs that implements the solution
of coefficient inverse heat conduction problems by the
method of mathematical modeling. The PPP is made to
meet requirements of object-oriented programming. In
this case, the computation of the IHTP coefficient reduces
to optimal control problems, which solution algorithms
are implemented in this PPP. Note that the PPP also
includes a data visualization unit.
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Busyanuzanus pemeHuii NPUKJIAIHBIX 32124 B MHOTONIPOLECCOPHBIX BHIYHCIUTEILHBIX CHCTEMAX
I'. I'. lIBauuy, E. I'. Xoaoa, E. B. UBamenko, B. B. Bycbiruu
AnHotanms. CTaTbs MOCBSIIEHA PACHpPEIEIIEHHOMY MOJEIMPOBAHUIO BU3yallM3allud BEKTOPOB PEIICHUH MPUKIAIHBIX 3a7ad Ha
OCHOBE CXEM IOBBILIEHHOTO IMOPsKAa TOYHOCTH. boJjiee BBICOKOE YCKOpEHHE BBIYUCIEHHUH 10 CPAaBHEHUIO ¢ KOHEYHO-Pa3HOCTHBIM
MOJIXOJIOM MJUIIOCTPUPYETCSl UCIOJBb30BAaHUSAM AHAJMTUYECKUX pEIIeHUH, KOTOpPbIE TO3BOJISIIOT IPOBOAMUTH BBIYHUCICHUE
OHOBPEMEHHO M TAapajUleIbHO II0 BCEM BpEMEHHBIM ciosM. [lokazaHO, 4YTO Hamboiee TEPCHEeKTUBHBIM IIOAXOA0M K
MaTeMaTHYeCKOMY MOJCTHPOBAHMIO TPUKIAJHBIX 3alad CIEAyeT CYHTaThb TOT, KOTOPBIH OCHOBBIBAETCS HA YHCIEHHO-
AHATTUTUYECKUX PEIICHHSX.

Knrwoueewle cnoea: mnozonpoyeccopuas bl4uciumenbHas cCUcmema, yCKopenue, 8u3yanusayus, pacnpedeseHnoe MooeiuposaHue,
YUCTEHHO-AHATUMUYECKOEe PelleHUe.
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