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Abstract. The article is devoted to distributed simulation of visualization of decision vectors of applied problems on the basis of 

schemes of increased accuracy order. The higher computational speedup in comparison with the finite-difference approach is 

illustrated by analytical solutions that allow simultaneous and parallel computations in all temporary layers. It is shown that the most 

promising approach to mathematical simulation of applied problems is the one that is based on numerical-analytical solutions. 
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Target setting. Significant computation speedup of 

applied problems is achieved by means of finite-

difference schemes due to the parallelization effect. 

However, the numerical-analytical algorithms for solving 

applied problems deserve special attention. Greater 

computational speedup compared to the finite difference 

approach can be achieved through analytical solutions 

that allow simultaneous and parallel computing for all 

temporary layers and, in this case, do not use combined 

memory. Thus, the most perspective approach to the 

mathematical simulation of applied problems should be 

the one that is based on numerical-analytic solutions. 

Effective means during the processing of heat and 

mass transfer tasks in metallurgical industry are 

considered to be the application of parallel computing 

technologies on distributed cluster-type systems that have 

relatively low cost and are easily scaled both by the 

number of processors and by the amount of RAM [2, 12]. 

Consequently, the distributed simulation of the vector 

visualization of applied problems solutions on the basis of 

schemes of the raised accuracy order is an essential and 

relevant task. 

Analysis of recent research and publications. Heat 

and mass transfer processes of metallurgical production 

should be considered as large systems [8-10]. Today, 

solving complex, large-scale tasks requires powerful 

computers and is characterized by ‘parallel’ term, that is, 

there are parallel computers, computing systems, parallel 

computing methods, etc. [3 − 5]. In broad terms, this term 

entered almost immediately after the appearance of the 

first computers, or rather, after realizing the fact that the 

computers created were not able to solve, during the 

optimal term, many practical tasks. The emergence in 

computing systems of new and expensive communication 

tools, a more advanced elemental base, stimulated the 

development of high-performance computations based on 

multiprocessor computing systems [1, 7]. 

In addition, the class of problems in question is usually 

solved through set of finite-difference equations, which 

essence is to replace the derivatives by difference 

relations. In this case, from the numerical algorithm point 

of view, the solution of finite-difference equations is 

divided into explicit and implicit schemes [11]. In an 

explicit scheme, the values of the desired function are 

determined sequentially, layer by layer. However, despite 

the apparent simplicity and ease of computing, such a 

scheme has one significant drawback. If the size of the 

grid hl  , the rounding errors can become so large that 

the resulting solution becomes meaningless. It is known 

that for the explicit scheme there must be met the 

condition: 5,0/ 2 hl . But the following empirical rule 

is fair: if we reduce the values of l and h, then the error of 

approximation of partial derivatives with finite-difference 

derivatives also decreases. However, the smaller the grid, 

the more computations need to be made, which means 

larger rounding errors. Implicit circuits allow to compute 

with a large step without significantly degrading 

accuracy, but such an approach requires a larger amount 

of computation. 

The considered analysis shows that the solution 

methods of this class of problems should be not only 

diverse, but also must combine quantitative assessments 

with the qualitative analysis possibilities. Nowadays, 

there have been some trends in development of 

numerical-analytic methods with complex logical 

structure, but unlike the piecewise difference methods 

they are of a higher accuracy order and with possibility of 

making algorithms with adaptation according to the 

approximation methods [13, 14]. In terms of computation, 

this approach is somewhat lengthy, but it shows a peculiar 

benchmark for comparison with other practical methods. 

At the same time, given that the computational 

experiment is carried out on a multiprocessor system, it 

can be asserted that the circumstance that constrained the 

development of the numerical-analytical approach is now 

losing its relevance. In this regard, this research has 

further developed the idea of making schemes of 

increased accuracy order on the basis of a numerical-

analytical approach to the computations of a wide class of 

the studied problems. 

Unresolved parts of the issues. Numerical solution of 

a typical problem of metallurgical thermophysics, 

especially multidimensional and non-stationary, generates 

a huge amount of data. Therefore, the systematizing and 

interpreting this information, giving it physical 

characteristics gains special importance. For example, 

plotting or isolating is a fairly common way of presenting 

information. However, the service packs used are based 

on the data arrays processing, arranged in relation to 

nodes in the grid area. As a rule, they do not apply a priori 

information about construction methods. This can be 

explained only by the fact that in practice of using 

methods of finite-difference approximation there is a 

stable opinion about the change uncertainty of the desired 

function in the intervals between nodal points of net area. 
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According to the authors [6, 15], simple ideas that 

underlie the primitive replacement of derivatives by finite 

differences can not be successful without analyzing and 

taking into account specific properties of solutions of a 

particular class of problems. While processing the 

computational algorithm it is necessary to use a priori 

information about the problem, and first of all, about its 

membership to one or another class of functions 

smoothness. The above-mentioned approach became the 

basis for distributed vectors simulation of applied 

problems. This research illustrates its importance through 

example of the initial-boundary problem. 

The purpose of the research is to develop a numerical 

solution to the problem of metallurgical thermophysics 

based on the application of multiprocessor systems. 

Particular attention should be paid to numerical-analytical 

algorithms for solving the set problems. Higher 

computation speedup comparing with the finite difference 

approach can be accomplished through the analytical 

solutions that allow simultaneous and parallel computing 

for all temporary layers without use of combined 

memory. To offer a package of application programs 

(PPP) that implements the solution of coefficient inverse 

heat conduction problems by mathematical simulation for 

carrying out computational experiments, based on the 

application of a multiprocessor computer system. The 

PPP should be developed covering requirements of 

object-oriented programming. At the same time, the 

solution of the coefficient problems reduces to the 

problems of optimal control, computing algorithms of 

which include in the package. Also, the PPP must include 

a data visualization block. 

Main research results. The solution of the boundary 

value problem for the heat conduction equation is 

considered. Let us find a function that is described by the 

equation of the form: 
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herein 

u(0,x) = 0, u(t,0) = 1, u(t,2) = 1., (2) 
 

Let us make a uniform grid, the step of which, 

respectively:  
 

Dx1 = 0,01; Dt1 = 0,001, (3) 
 

Let a sequential algorithm be implemented by an 

implicit scheme by a sweep method. Then after the 

sampling of equation (1) the following system of linear 

algebraic equations (SLAE) is obtained: 
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at the same time, the numbers of internal network 

nodes correspond to the expression: ;12,1  mp  desired 

network functions −
p,12m,10,1 ,1,1 UUU  ; values of 
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,10 pU  are taken from the previous temporary 

layer. 

The system of linear algebraic equations (4) has a 

three-diagonal structure, particularly:  
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A fairly simple and convenient sequential method for 

solving the difference boundary value problem (4) - (6) is 

one of the methods for exclusion of unknown Gauss 

scheme and is called the sweep method. A small number 

of arithmetic operations, as well as a rather weak 

sensitivity to computational errors, make the sweep 

method a very convenient means for implementing 

sequential computational algorithms. 

Here are several aspects of computational nature in 

computing simulation. When solving non-stationary 

problems by implicit (or explicit) methods the 

computations are always carried out according to the 

emporary layers consistently. If all the information about 

the adjacent layer is located in the RAM, then no special 

complications arise. However, if the problem is so big 

that it does not meet the stated above condition, then there 

should be used the combined memory. The information 

transfer time from slow memory to the operational is 

proportional to the number of points in the layer. The task 

solution finding time on the next layer is also proportional 

to the number of points in the layer. But one operation 

execution period is much less than the average time value 

of sending a unit of information from the slow memory to 

the operational one. Therefore, with such a computation, 

most of the time is spent on the transfers’ organization, 

that is, spent nonproductively. Hence, the following 

question arises: can there be any increase of the efficiency 

of using computer memory when solving a given class of 

problems? And if there is a possibility, then how? The 

answers to the questions can be obtained with a more 

detailed research of the graph algorithm problem solution. 

Firstly, it is obvious that such a problem can be solved by 

a parallel processor. And secondly, the features of the 

parallelization of the problem should be such that the time 

of the corresponding calculations and data processing in 

the RAM becomes greater than the time spent on data 

transfer. Finally, in order to eliminate the use of combined 

memory in solving the problem (1) for such an equation 

there must either be applied a numerical-analytical 

approach, or one of the methods of mathematical physics, 

for example, Laplace's integral transformation in time. 

Numerical-analytical approach. For each nod 

( pxx ) of the network area the solution of a given 

equation is found in the analytic functions class that allow 

its representation in the form of a Taylor series method, 

that is 
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herein normalized variable 
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 unknown Taylors components of the desired function 

u are defined as follows: 
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After substituting the series (9) into the relation (7), 

using the indeterminate coefficients method, we obtain a 

system of differential equations in the form of a ordinary 

differential equations system (ODES). Considering the 

obtained relation as recurrent by value of n, we can write 

the corresponding consequences. Then the equation (3.1) 

general solution gets the following form: 
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It should be noted that the computing system can be 

used to increase the amount of available memory. For 

instance, with an increase by N times the number of 

processors, the available memory increases the same. This 

circumstance becomes very significant when solving 

multidimensional problems when there are problems with 

the computing environment memory (swapping, etc.). 

Therefore, for a more complete analysis of the developed 

multiprocessor system efficiency, the computational 

experiments were carried out in the simulation of 

multidimensional problems. 

Consider the peculiarity of constructing splitting 

schemes for distributed simulation of applied problems. 

To have the ability of switching to significantly more 

complex algorithms, it is necessary to put the developed 

methodology on a fundamental theoretical basis. To do 

this, difference schemes of splitting can be used as one of 

the most important means for modeling multidimensional 

nonstationary problems of mathematical physics. The 

difference scheme of splitting is one of the important 

means of computing multidimensional non-stationary 

problems of mathematical physics. The point is that the 

difference schemes, where the number of arithmetic 

operations required for the transition between temporary 

layers is proportional to the number of unknown values of 

the desired functions, is called economic. It is known that 

the computation under explicit schemes is very simple. 

The quality of arithmetic operations in them is not subject 

to improvement. However, being economical, an explicit 

scheme is stable only with its strict limitation on the step 

of the grid in time. The difference schemes of splitting 

based on the set of not quite equivalent to each other 

sentences, but with a stereotypical goal to reduce the 

three-dimensional propagation problem of the domain of 

dependence on the sequence of schemes include unknown 

variables, which act alternately in coordinate directions 

and reduce the solution of such problems to scalar sweep 

method. Therefore, the difference scheme of splitting is 

considered an economic and, of course, stable, that is, as 

if combining the benefits of explicit and implicit schemes. 

Moreover, there should be noted that the greatest effect 

from the use of up-to-date systems for processing 

information with a high level of parallelism is likely to be 

achieved when the described schemes are applied to 

perform matrix calculations in linear algebra or in 

methods for solving differential equations with partial 

derivatives. If there was an opportunity to use one 

processor on one computation node during the solution of 

the mentioned equations, then one can perform 

computations in all nodes in parallel and simultaneously. 

Surely, it is unreal. A typical finite-difference grid is 

composed of 50x50 or 100x100 nodes, so its computation 

in such architecture requires a system with 2,500 or 

10,000 processors. 

The use of numerical-analytical solutions allows for 

each temporary layer to perform computations 

simultaneously at any time, and, consequently, it does not 

require organization of information transfer from slow 

memory to the operational, which means, the 

interprocessor data exchange is excluded. This explains 

the significant solution speedup of the problems that were 

simulated by numerical-analytic methods. 

Today, there are various software products, often 

called packages or software complexes. This research 

considers the applications package, intended for 

thermophysical experiments processing by inverse 

methods. The main purpose of the PPP making is to 

provide practical assistance to the researcher in all stages 

of the thermal-physical experimentation using inverse 

methods by a personal computing cluster. 

Hence, the class of inverse thermal problems of 

metallurgical thermophysics is examined. Their 

formulation is done in terms of "cause-effect" 

relationship. According to the accepted model, the 

boundary conditions and their parameters, initial 

conditions, thermophysical properties and etc, are related 

to causal characteristics of the heat exchange process. In 

this interpretation, the establishment of causal 

relationships is the goal of direct heat transfer problems. 

Conversely, if certain information about the temperature 

field needs to be restored to causal characteristics, then 

we have one or another formulation of inverse heat 

transfer problems (IHTP) belonging to the class of 

problems that are incorrect from the positions of 

Hadamard. 

The identification method of heat conduction equations 

according to the data of the thermophysical experiment is 

based on the interpretation of IHTP as the optimal control 

problems [5]. In this case, the mathematical model (MM) 

is considered to be guided by the set of input parameters 

given by the vector R. These include the coefficients of 

the heat equation. For given values of the components of 

the vector R, the solution of the heat equation with initial 

and boundary conditions is not only the function of spatial 

coordinates and time, but also the input parameters. 

Assuming that at certain moments of time the thermal 

state of the sample, and some parameters of the vector R 

are unknown, we arrive at the problem of optimal control. 

Introduction of the functional allows us to formulate the 

method of identifying the algorithm of IHTP solution. 

The MM’s structure in this case is reduced to two 

controlled models: 

- temperature (model 1), 

- streaming (model 2). 

Such a statement allowed to divide the control 

parameters for the vector R. Thus, by model 1 it is 

possible to involve control in the form of thermal 

conductivity coefficient, and the model 2 - the of thermal 

conductivity coefficient. 
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Due to the chosen method of approximation, the 

solution of the heat equation (direct method) is reduced to 

standard computational procedures - the sweep method 

and use of differential effects of analytic solutions on the 

nodes of the grid, provided that .,12,1 Zmmp xx   

The domain of vector R parameters admissible values 

in MM is selected on the basis of a priori information 

about the model. In the PPP, this procedure is formalized 

by introducing several conditions in the algorithm. The 

methodology of the approach is reduced to the 

construction of a minimizing functional sequence, 

particularly: 

,2)()( рTTRJ
е
  (11) 

wherein Tе, Tр are the temperature values, they are 

known from the experiment and computation obtained as 

a result of the MM solutions. 

In this formulation the IHTP coefficient computation is 

reduced to the problem of optimal control, which solution 

algorithm is implemented in this PPP. 

The experimental data visualization results are shown 

in Fig. 1. 

The visualization results analysis demonstrate that the 

isolines are smoothed out, which most accurately reflects 

the computational algorithm. Thus, when making service 

programs for processing and issuing results to print in the 

form of charts and isolines, the proposed approach allows 

to minimize work on input and output data of the studied 

problems class. 

Since the values of the base nodes are arranged in a 

grid area, then for each temporary layer, the operations 

shown in formula (10) are not related to each other. 

Therefore, the computations when making graphs or 

isolines can be performed in parallel and simultaneously. 

The PPP is used for planning and processing of the 

thermophysical experiment results by the inverse 

methods. The developed algorithms used in the PPP can 

quite simply be rebuilt for the solution of other coefficient 

and boundary IHTPs. 
 

 
Fig. 1. Processing of the test problem solution results in graphs 

 

For the computing experiments based on application of 

a multiprocessor computing system there was developed a 

package of applied programs that implements the solution 

of coefficient inverse heat conduction problems by the 

method of mathematical modeling. The PPP is made to 

meet requirements of object-oriented programming. In 

this case, the computation of the IHTP coefficient reduces 

to optimal control problems, which solution algorithms 

are implemented in this PPP. Note that the PPP also 

includes a data visualization unit. 
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Conclusions. In this research, the approach to the 

numerical-analytical concept of visualizing vectors in 

solutions allows us to obtain any necessary data for 

making smooth graphs or isolines on the corresponding 

grids. The algorithm maximum parallel forms are a 

subject of special interest, since they determine the 

minimum possible time for visualization algorithm 

implementation. 
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Визуализация решений прикладных задач в многопроцессорных вычислительных системах 

Г. Г. Швачич, Е. Г. Холод, Е. В. Иващенко, В. В. Бусыгин 

Аннотация. Статья посвящена распределенному моделированию визуализации векторов решений прикладных задач на 

основе схем повышенного порядка точности. Более высокое ускорение вычислений по сравнению с конечно-разностным 

подходом иллюстрируется использованиям аналитических решений, которые позволяют проводить вычисление 

одновременно и параллельно по всем временным слоям. Показано, что наиболее перспективным подходом к 

математическому моделированию прикладных задач следует считать тот, который основывается на численно-

аналитических решениях. 


