
Solving the Spectral Problems by the Modified Method  

of Successive Approximations 
 

 National University “Lviv Polytechnic”, 2 Ivan Franko National University of Lviv, Lviv, Ukraine 
* Corresponding author. E-mail: serhiy.yaroshko@lnu.edu.ua 

 

Abstract. We describe an effective numerical method of solving the complete spectral problem with a given linear completely continuous 
operator (or with a polynomial pencil of such operators) acting in a functional normed space. We use the modified method of successive 
approximations (MMSA) to calculate the eigenvalues (single and multiple), eigenfunctions and associated functions of the operator. We can 
make a posteriori estimation of the accuracy of the obtained values. The theorem about MMSA convergence and the technique of the accu-
racy estimation are formulated in this paper. Besides that, some examples of MMSA applications are demonstrated. 
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Introduction. The eigenvalue problems arise in many ap-
plied fields of mechanics, electrodynamics, structural analy-
sis, mathematics, quantum mechanics and others. There are 
many methods, general and special, of solving such prob-
lems, but the interest to the question remains at high level. 
The large number of publications, produced every year, 
proves this. 

We will talk about the modified method of successive ap-
proximations (MMSA) [1, 2] designed to calculate the ei-
genvalues and eigenfunctions of a given linear completely 
continuous operator. Similarly to the classic power method, 
MMSA calculates the iterations of some initial function but 
takes into account not only the two last iterated functions, but 
all the obtained ones. MMSA acts especially well while the 
operator has several close characteristic numbers. Recall, that 
the characteristic number of an operator is reciprocal of the 
eigenvalue. The method allow us to calculate single and 

multiple characteristic numbers n  with the corresponding 

eigenfunctions and the associated functions (in case when the 

geometric multiplicity of a number is less than the algebraic 

one). 
Description of the MMSA. Let A be a linear completely 

continuous operator acting in a functional normed space E. It 

is known that there exists such entire function  F   that its 

roots are the characteristic numbers of the operator A. It is 
named the characteristic series of the operator and has the 
form 

 
0

j

j

j

F c




  
.(1) 

Let us consider the spectral problem 

0u Au  , (2) 

where  is a spectral parameter. Its solutions are the char-

acteristic numbers n  and the eigenfunctions  nu x . Let 

1nu  , 1,2,...n   

We consider also the auxiliary problem 

 0u Au v F   , (3) 

where 0v  is some initial function from E, the coefficients 

jc  of series (1) are unknown and 

   0

1

n n

n

v x b u x




 ,.(4) 

Problem (3) has solution at every value of the parameter  

and becomes a homogeneous spectral problem (2), when  

becomes equal to a characteristic number n . Equation (3) 

includes  polynomially, therefore its solution has a form 

   
0

m

m
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u x Z x
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where    
0

m

m j m j

j

Z x c v x
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 , 
1 0

j

j jv Av A v  . 

Theorem 1. Let all the characteristic numbers n  of a 

linear completely continuous operator :A E E  be single, 

and all the coefficients nb  in the decomposition (4) be not 

equal to zero. If the condition 

lim lim 0m m m
m m

Z c
 

   , (6) 

is true, then the numbers , 0,jc j m  in the (5) are the co-

efficients of an entire function (1), the roots of this function 

coincide with n , and the sum of series (5) at n    is 

equal to n na u , where 0na  . On the contrary, if all n  are 

real positive and growing not slower then , 1pCn p   starting 

from some index 0n , and condition 
1

n

n

b K




    is true, 

then condition (6) is true. 
The proof of the theorem was published in [2]. Theorem 1 

gives us the way to construct the computational algorithm. 

Firstly, we set an initial function 0v . Next we successively 

calculate 1m mv Av  , 1,2,...m , minimize the function 

m  to obtain the unknown coefficients j mc c  and calcu-

late the roots 
( )m

n  of the polynomial 

  ( )

( )
0

1 m
m j

m jm
jm

F c
c 

    which are the approximate charac-

teristic numbers. Then we calculate the corresponding ap-
proximate eigenfunctions as segments of the series (5). 

Remark 1. If space E is finite-dimensional then we obtain 
the exact values of all the characteristic numbers and the 
eigenvectors for finite amount steps of the algorithm of the 
method. 

Remark 2. If some characteristic number k  is kl -

multiple and has the corresponding eigenfunctions  ,k ju x , 

1,..., kj l , then the function  ku x  in the decomposition 

(4) has the form    ,

1

kl

k j k j

j

u x a u x


  and the theorem 

proof remains true. To make sure that the retrieved character-
istic numbers are simple we have to solve the problem again 
with a different initial function. In the new solution the ei-
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genfunction of a multiple characteristic number will differ 
from the previous one. 

Numeric results. The eigenfunctions and eigenvalues of 
the boundary value problem [3] 

   y x y x   , [0;1]x ;      0 1 1 0y y y   , (7) 

are   sinn ny x k x  and 2
n nk   respectively, where nk  

are the roots of the equation tgk k  . It is easy to construct 

an integral equation equivalent to (7): 

   
1

0

,y Ay G x t y t dt  
, 

 
 
 

2 2,
,

2 2,

t x x t
G x t

t x x t

  
 

 

., (8) 

The operator A is completely continuous in the spaces 

[0;1]C  and 2[0;1]L . The problem (8) was solved by the 

power method and by MMSA with the same initial function 

 0 1v x  . The results are shown in the table 1. It is evident 

that MMSA provides higher convergence to the first value 
and calculates several next ones. 

 

Table 1. Eigenvalues of the problem (7) – characteristic numbers of the problem (8) 

Iteration, n 
Power method, 

( )

1

n  

MMSA 
( )

1

n  
( )

2

n  
( )

3

n  
( )

4

n  

1 4,8 4,166666667    
2 4,1667 4,116062477 31,43418628   
3 4,12270 4,115858528 24,37850638 87,85765293  
4 4,116932 4,115858366 24,14142238 65,26022330 235,4016604 
5 4,1160399 4,115858366 24,13935078 63,73463220 139,3090487 
6 4,11588829 4,115858366 24,13934205 63,66050780 124,5039154 

Right values 4,115858366 4,115858366 24,13934203 63,65910653 122,8891618 
 

Note, that the eigenfunctions ny  do not establish a basis 

of [0;1]C  but MMSA works successfully. 

Let us consider the spectral problem with the simple-layer 
potential 

     ln ,
C

s s u s ds u s    
, (9) 

where C is a circle of the given radius R (let R be equal to 

1); ,s s – points on the circle; ( , )s s  – distance between 

them. In the polar coordinate system ( , )r   the equation (9) 

becomes 

      ln 2 1 cos u d u





          
, (10) 

It is easy to verify that the characteristic numbers of (10) 
are 

n n    , 1,2,...n   with the corresponding eigenfunc-

tions 
,1 ,2cos , sinn nu n u n    , i.e. every n  is two-

multiple. We solved (10) in 
2[ ; ]L    by MMSA with dif-

ferent initial functions 0v  (even, odd and general) and ob-

tained the n  as simple numbers but with the different cor-

responding eigenfunctions. The results are shown in table 2. 

The approximate eigenfunctions 1u , 2u , 3u , 4u  have the 

accuracies 910 , 710 , 410 , 210  respectively. 

The initial function 0 sinv     is even, so its decompo-

sition of form (4) contains only 
,1nu  eigenfunctions and the 

corresponding coefficients have the form 

sin cosnb n d





      2, 1;n 
1

2

( 1)
2 , 2

1

n

n
n


 


. 

It is easy to make sure that theorem 1 restriction on nb  is 

satisfied: 
2

1 2

1
2 2

2 1
n

n n

b
n

 

 


    


  . Conversely, the 

initial function 
0 cosv     is odd, its coefficients 

cos sinnb n d





     
2, 1n  ;

2

( 1)
2 , 2

1

n n
n

n


 



, and 

the series 
1

n

n

b





 is divergent. This example demonstrates 

that the restriction on nb  is not obligatory in the applications. 

 

Table 2. Characteristic numbers and eigenfunctions of the problem (10) 

n Exact n  
Approximate 

n  

Approximate nu  obtained with different 0 ( )v   

0 sinv     
0 cosv     

0 exp sinv     

1 -0.3183098862 -0.3183098862 1 cosu    
1 sinu    

1 cos sinu a b    

2 -0.6366197724 -0.63661978 2 cos 2u    
2 sin 2u    

2 cos2 sin 2u a b    

3 -0.9549296586 -0.9550 3 cos3u    
3 sin3u     

4 -2.683239545 -2.69   0.4479; 0.8941a b    

 

Both operators in the problems above were self-adjoint. 
Let us consider another problem with a not self-adjoint oper-
ator: 

( ) ( ), [0;1], (0) (1) 0y x y x x y y     , (11) 

It is known [3] that the eigenvalues of (11) are complex 
conjugated numbers 2 , 1, 2,...k k i k       We transformed 

the problem (11) to the integral form using the Green’s func-

tion ,
( , )

1 ,

x x t
G x t

x x t

 
 

 

 and solved it by MMSA. The 

kernel of the integral operator is simple enough so we can 

calculate the functions jv  and the coefficients jc  analytical-

ly (with the initial function 0 ( )v x x ) and diminish numer-

ical errors. We performed thirty-seven steps of the method 
and obtained twenty-four approximate characteristic num-
bers. The first pair of them have twenty-four right decimal 
digits and the last pair – only two digits. 

It turned out that the approximate solutions converge to 
the exact values as a geometric progression with a small 
common ratio q, while the steps of MMSA are executed 
analytically. We saw in different problems that the value of q 
varies from 0.001 to 0.1. 
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Associated function. Sometimes the algebraic multiplici-
ty of a characteristic number is greater than the amount of the 
corresponding eigenfunctions. In this case, the associated 
functions correspond to the number as well. For instance, let 

k  be a two-multiple number with a single eigenfunction 

ku . Then the associated function kw  corresponds to k . 

This function is a solution of the equation 
1

k k k kAw w u  . 

It turns out [2] that MMSA can calculate such numbers 
and functions if the initial function has the form 

     (1)

0

1

k k n n

n

v x b w x b u x




   and the algorithm is com-

plemented with formulas for the associated function: 
1

( ) ( ) ( ) 1

1

m
m m m j

k j k

j

w T j






 
, ( )

1

m
m

j i m j i

i j

T c v  

 

 
. We verified it 

by solving several model problems. 
Error estimation. It is shown in [4] that at the m-th step 

of the algorithm we need to solve the system 
( )mc e Λ , (12) 

where { }ij Λ ; j

ij i

   ; (1,...,1)e  ; 
( )m

jc  is the m-

th approximation to the unknown coefficients jc . Some 

elements ij  vanishes during the calculations due to the 

finite computer memory. We mark Λ  remaining in the 

memory part of the matrix . Then the linear part of the 
method error has form 

   1 ( ) 1mR c e 

    P Λ
, (13) 

where P – m m  matrix, i-th column of it consists of the 

coefficients of the polynomial  
1,

m

j

j j i 

 
. 

Whereas the exact numbers j  are unknown, we use the 

obtained approximate numbers j  to estimate the method 

error in the way: 1) calculate  R    ; 2) calculate 

 R

      ,  R

      ; 3) write the estima-

tion as intervals ,j j j j j

 

 
       

, 1,...,j m .

The integral operator    
1

1
2 cosAu k kxt u t dt


    defines 

the Fourier cosine transform of finite functions.It is known, 
that the absolute values of characteristic numbers of this 
operator gather near 1 when the parameter k becomes larger. 
The first five characteristic numbers are tabulated for 

1,...,8k  . We calculated them by MMSA and estimated 

its accuracy according to the described technique. All the 
obtained number and estimations of them coincided with the 
known values. 

An interesting result was obtained for 16k  : 

1 1.0000000  , 
2 1.0000000   , 

3 1.0000011  , 

4 1.0003014   , 
5 1.0265150  , 

6 1.6333306   , 

7 8.0776840  , 
8 79.6164   , 

9 1118.5  ; 

1 6... 0     , 
7 [0.08%; 0.09%]  , 

8 [0.12%; 0.13%]  , 

9 [6.42%; 6.44%]  . 

Polynomial pencil of operators. It is possible to solve a 
spectral problem with a polynomial pencil of completely 
continuous operators by MMSA. According to [5] we can 
replace the original problem by the linearized one and solve 
it by the method. For instance, let consider a problem 

3 2

3 2 1 0B B B I      , where the operators iB  act in 

a normed space E and I is a unite operator. The equivalent 
problem has form (2) assuming that the operator A acts in the 

space E E E   and has form 

3 2 1

0 0

0 0

I

A I

B B B

 
 

  
    

. This 

approach was tested on a wide range of problems with the 
pencils of matrices and operators. The highest power of 
matrix pencil was eight and the power of operator pencil – 
three. We obtained right solutions in all the cases. 

Conclusions. The modified method of successive approx-
imations is used to solve spectral problems with matrix or 
integral operators and with polynomial pencils of such opera-
tors. The method calculates several eigenvalues and eigen-
functions of the problem. The domain of application of 
MMSA is wider in practice then in theory, as described in 
the grounding theorem 1. Most effectiveness of the method 
is reached when several primary eigenvalues are close. Ac-
curacy of the approximate solution can be estimated after 
finishing the calculations. The estimation technique takes 
into account the peculiarities of MMSA. 
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Решение задач на собственные значения модифицированным методом последовательных приближений 

С. М. Ярошко, С. А. Ярошко 
Аннотация. Описан эффективный численный метод решения полной спектральной задачи для заданного линейного вполне не-
прерывного оператора (или полиномиального пучка таких операторов), действующего в нормированном функциональном про-
странстве. Модифицированный метод последовательных приближений используют для вычисления собственных значений (про-
стых и кратных), собственных и присоединенных функций оператора. Точность вычисленных приближенных значений можно 
оценить апостериори. В статье сформулирована теорема, обосновывающая сходимость метода, описана методика апостериорной 
оценки точности. Приведены примеры применения метода. 

Ключевые слова: собственное значение, собственная функция, присоединенная функция, вполне непрерывный оператор, опе-
раторный пучок. 
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