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Abstract. The expressions for the geometric characteristics of the median surface of the corrugated cylindrical shell, depending on 

the frequency and amplitude of the corrugation, are obtained. The character of the dependence of the first natural frequency of geo-

metrically nonlinear vibrations of corrugated elongated cylindrical panels on the corrugation frequency is investigated.  
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Introduction. Shell elements are one of the most com-

mon components of loaded structures and structures of 

various intended use. This is due to their rational material 

capacity and the ability to provide the necessary stiffness 

in certain areas that require operating conditions. Among 

the various types of shells, a special place is occupied by 

circular cylindrical shells and their fragments. A large 

number of works [10] is devoted to the simulation of de-

formation and the methods of their calculation for the ac-

tions of both static and dynamic loads. Less investigated 

are cylindrical shells coiled in the direction of the circular 

coordinates, especially for dynamic geometrically nonlin-

ear deformation, in particular their transverse oscillations. 

To avoid resonance phenomena due to the effects of in-

tense vibration loads, it is necessary at the design stage to 

determine the spectra of the natural frequencies of the 

specified structural elements. 

Linear free vibrations of corrugations in the direction 

of the angular coordinates of cylindrical shells were in-

vestigated in [3, 7–9]. In [1, 4, 11] their geometrically 

nonlinear vibrations were investigated. Various applied 

shell theories were used for this purpose. However, such 

an approach does not allow fully (exactly) take into ac-

count the geometry of the middle sections of such shells 

and the specificity of the elastic characteristics of materi-

als used for their manufacture. In order to eliminate this 

shortcoming in this paper, a method is presented for de-

termining the amplitude-frequency characteristics of cor-

rugated cylindrical shells on the basis of spatial dynamic 

geometrically nonlinear relations of the theory of elasticity. 

Problem statement. At first, consider the thin curvi-

linear elastic layer in thickness h  with a cylindrical medi-

an surface of the radius R . We refer this surface to the 

natural mixed coordinate system  =1 , z=2 , r=3  

(see Fig. 1).  
 

   
Fig. 1. The middle section of a fragment of cylindrical circular 

shell  

 

 
Fig. 2. The middle section of a fragment of corrugated cylindri-

cal circular shell 
 

Now let the mid-section of the layer have the form, as 

in Figure 2. We introduce on its mid-surface the same as 

for a circular cylindrical surface, a mixed coordinate sys-

tem 3,2,1, =ii , which is connected with Cartesian 

3,2,1, =ixi  by relations  

))(()))((( 1131  acosagcosgRx vA++= ; 

)()))((( 1132  sinaagcosgRx vA++= ; 23 =x  (1) 

where R – the radius of the median surface of the cir-

cular cylindrical shell, the upper and lower facial surfaces 

of which pass through the vertices of the corrugations; 
0
1=L  – the length of the arc of the creature; Ag  – am-

plitude of corrugation; g  – corrugation frequency; 

)2/(2/)( 11  −+= LKa ; RK /1= . 

Functions that determine the characteristics of a geo-

metrically nonlinear vibration process describe the de-

pendencies [6]: 
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2. elasticity relations 
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4. relation between the components ijS of the 

nonsymmetrical Kirchhoff stress tensor Ŝ  and the 

components 
ik  of the symmetric Piola stress tensor ̂  
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In equations (2) and (3) A
~

 – tensor of elastic charac-

teristics of the layer, and   – its density.  

Boundary conditions on the front surfaces of the shell 

2/3 h=  for the free vibrations has the form  

0),2/,,( 21
3 = thS i  , 2,1,0 = iii   (6) 

and on its ends 0
11  =  at their hinged fixing on the 

lower front surface 2/3 h−= : 

0),,,( 32
0
1

1 = tS i  ,(7) 

0),2/,,( 2
0
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The motion equations (2) together with relations (3)–

(5) and boundary conditions (6)–(8) are describe 

geometrically nonlinear transverse vibrations of the 

corrugated elastic layer. 

Solution of the problem. For the radius vector of shell 

generatrix from (1) we have the expression 
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Radius vector of each point of the median cross-section 

of the layer  

)()( 131  nrR += . 

For vectors of the covariant base of the median surface 

of the corrugated layer (corrugated cylindrical shell) from 

(1) together with (9) we obtain: 

211 ))()(())()(( eazsinawcoseazcosawsinR


+−++= ; 

212 )()( easineacosR


+= ; 
33 eR


= , 

where )(),( 21 agKcosgqww vA+==  ; 

)()( 1 agKsinggzz vvA==  ; 3,1, =iei

  – the basic vectors of the 

Cartesian system 3,1, =ixi
. 

For radius vector of the tangent to the generatrix we 

obtained the following expression 
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Then for the normal to the generatrix we gives 
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In Figures 3 and 4 depicts the location of vectors nor-

mal to the median surface of the corrugated cylindrical 

shell for two different corrugation frequencies. 
 

 
Fig. 3. Appearance of the section of the corrugated shell and 

normal to the median surface at 1=L m, 25.1=R m, 05.0=h m, 

03.0=Ag  m, 20=g  

 

 
Fig. 4. Appearance of the section of the corrugated shell and 

normal to the median surface at 1=L m, 25.1=R m, 05.0=h

m, 03.0=Ag  m, 50=g  

 

Similarly, we construct a covariant base and normal 

and tangent on the facial surfaces of the considered shell. 

This is necessary for the possibility of using the proposed 

and substantiated numerical method in [6] to find a finite 

number of natural frequencies and modes of elongated cy-

lindrical shells with arbitrary form of generators in geo-

metrically nonlinear vibrations. The method is based on 

the linear approximation of displacements of the shell 

points along the normal coordinate, in combination with 

the finite element method, according to the tangential co-

ordinate on the median surface shell [2]. The resulting 

system of nonlinear algebraic equations with respect to 

approximation coefficients is solved by an improved per-

turbation method, which was proposed and theoretically 

substantiated in [5]. 

Numerical example and conclusions. As an object, an 

elongated cylindrical shell with a length of generatrix 

22 =L m, the radius of the median surface of the shell, 

whose facial surfaces pass through the edges of the corru-

gations, 25.1=R m and elastic characteristics, are chosen: 
11101.2 =E н/м2, 3.0= , 10101.8 =G н/м2 and density 

3108 = kg/m3. The influence of corrugation frequency 

vg  on the minimum natural frequency 
min is investigat-

ed. 

 

Table. The dependence of the 
min on the vg  

vg  2 4 6 8 10 20 50 80 100 200 300 500 

min [Hz] 799 775 692 1025 1056 3658 6383 6936 7709 5559 4914 3195 

 

  

a b 

Fig 5. The dependence of the minimum natural frequency 
min  on the corrugation frequency  

 

vg
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As can be seen from the results shown in the Table and 

graphs in Fig. 5 the minimum 
min is achieved at 6=vg , 

which coinciding with the conclusions of article [7]. Also 

from Figure 5b it can be concluded that when →vg  the 

value 
min goes to a certain value greater than the first 

proper frequency of the non-circular cylindrical shells. 

This is due to the fact that the boundary transition ob-

tained by the smooth shell has a greater thickness than the 

original non-enveloped shell. 
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