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Introduction. Mechanics of contact interaction is the 

actual area of deformed solids. Its development is stimu-

lated by the problems of mechanical engineering, extrac-

tive and processing industries, but primarily by tribologi-

cal issues. 

Overview of related publications. One of the first re-

searchers, who succeeded to get a general solution of the 

contact problem was Hertz H.[1]. He examined the con-

tact of two elastic bodies with curved surfaces, that is 

loaded with forces operating transversal to the plane of 

the contact. Issues of the contact strength were dealt with 

by such outstanding scientists as Dinnik [2] Belyaev [3] 

Kovalsky B.S. [4], Pinegin [5], Phepl L. [6], Jonson K. 

[7] and others but some questions need explanations so 

far. 

The basic material summary. When two elastic bod-

ies are contacted, of which at least one has a curvilinear 

surface, it can be assumed that under normal load, the 

curvature will be "thrown", that is, the radius of curvature 

increases (Fig. 1). 
 

 
Fig. 1. Calculation scheme 

 

Then point А, with coordinates 1 1,x z  is shifted to 

point А1 having coordinates 1 1,x z  . As arc ОА is equal 

arc ОА1 we obtain  
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As we can see from these calculations, a point has not 

only vertical shift on axes Z1 as before accepted by many 

authors but also the horizontal ones. These shifting will be 

maximal for the edges of the contact plane, and in the 

center they are equal a zero. 

Find motion on axis z  
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From (1) we obtain 
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Substitute this expression to equation (4) we obtain 
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In a similar we obtain movement of other body 
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Motion on axis х for the first body 
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For other body 
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For spaced body in plane YOZ transversal shifts will 

be equal 

111 sinRy = , 
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Where R –radius of curvature of the body surface in 

the plane YOZ. 

Then surface of the body motion on axis y is 
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Closing of the bodies will be equal 
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Consider the contact stresses in the interaction zone of 

rope and drum. 

In case when the contact occurs between rope and 

drum groove (Fig.2) we have 
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21 kK r= ; 
22K R= , 

 
γ = 0; γ1 = γ2 – deviation angle of the rope twist, then 
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Fig 2. Layout of rope and drum contact. 
 

Assumed the very small deviation angle (γ ≤ 3°) and re-

lationship 20...18=
kr

R , we obtain: 
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As in the middle the surface of pressure for each pair 

of corresponding points  
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Taking into account that the rope surface at pressure 

takes the point of the drum groove surface, it can be as-

sumed that 21 ww = . 

Then 
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Write equation of elastic equilibrium  
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Where u,v,w – shifts projections on coordinate axes х, 

у, z. 

Е – modulus of elasticity; 

G – shear modulus; 

 – a Poisson constant 

2u , 
2v ; 

2w – Laplace's surgery. 

Substitute expressions of deformation u  and w  from 

formulas (7) and (9) to the equations system (20) we ob-

tain 
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Determine the tangential stresses on the body surface  
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Normal stresses define by formula  
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Results and its discussion. The appearance of cracks 

in the depth of the body can also be explained by the fact 

that there is a boundary layer that separates the core of the 

body with a practically invariable structure and a surface 

layer with transverse pressure and longitudinal displace-

ment. If the shear stresses of the surface layers, which 

depend on the material properties, the equilibrium state 

and other factors, are sufficiently large, then cracks can 

occur on the surface of the body that is compressed and 

propagate inside. 

Conclusion. Such approach to the contact problem so-

lution explains many questions. As practice has shown, 

tangential stresses are increased at a distance from the 

center of the contact, and they do not have the greatest 

values beyond the boundaries of the contact zones, and in 

the center of the contact, that is, for x = 0, y = 0, they are 

zero. In addition, the largest tangential stresses are at a 

depth, that is, at the points where the maximum material 

displacement occurs as a result of a change in the radius 

of curvature of the body surface which is in contact. 
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