Александр Павлович Лидов — один из первых российских исследователей XIX — начала XX в. в отрасли покраски тканей органическими красителями

В.В. Голова*

Национальный технический университет «Харьковский политехнический институт», г. Харьков, Украина *Corresponding author. E-mail: valentinadekanat@mail.ru

Paper received 14.09.15; Accepted for publication 02.10.15.

Аннотация. Раскрыто вклад профессора Александра Павловича Лидова в исследование вопроса о покраске тканей естественными красителями. Показаны основные направления деятельности выдающегося профессора и инженера-технолога Харьковского технологического института, а именно: ситцепечатанье и отбеливание специфическими реактивами. Обоснована актуальность данного вопроса для развития химической промышленности Юга России.

Ключевые слова: химическая наука, органические краски, крашение, пигмент, беление, электролиз

История науки является одной из составляющих всемирной истории. В настоящее время существует необходимость изучения истории науки и техники, а в особенности вклада в ее развитие достижений выдающихся ученых прошлого. Одним из таких знаменитых личностей был профессор Харьковского технологического института Александр Павлович Лидов.

Отдельные аспекты деятельности профессора химической технологии Александра Павловича Лидова опосредовано отображены в [1, 2, 3], но отсутствует целостное исследование работы выдающегося ученого в отрасли крашения, ситцепечатанья и отбеливания тканей.

Цель работы раскрыть значение исследований, производимых А.П. Лидовым в отрасли крашения, ситцепечатанья и отбеливания ткани, а также его вклад в развитие химической технологии.

В конце XIX—начале XX в. в Харьковском технологическом институте проводили свои исследования такие знаменитые химики, как В.А. Гемелиан, И.А. Красуский, М.Д. Зуев, А.П Лидов и др. Важным было то, что каждый из научных деятелей занимался своим четко определенным направлением. Например, В.А. Гемалиан занимался вопросами о строении кротоновых кислот, синтезом трифенилметана и его гомологов, сжимаемостью газов при малых давлениях и т.д. М.Д. Зуев занимался неорганической химией, а именно был высококлассным специалистом в отрасли свеклосахарной промышленности. Также уникальнейшим специалистом-практиком в ХТИ был профессор Александр Павлович Лидов [1, с. 12].

Проработав на должности инженера-технолога на газовом заводе около 10 лет, А.П. Лидов уже до вступления на свою должность в институте имел широкие практические навыки и ряд научных публикаций. Он стал незаменимым экспертом в вопросах беления, крашения, ситцепечатанья, мыловарения, клееварения, газового дела и других, не менее важных отраслей органической химии [2, с. 72–73].

В Российской империи электролитический способ беления был предложен или одновременно с зарубежными изобретателями, или несколько ранее. Впервые, еще в 1882 г. А. П. Лидов совместно с профессором В.А. Тихомировым (1841–1908гг.) проводили опыты по электролизу хлоридов натрия, калия и кальция, применяя электрический ток, полученный от динамо-машины. Ими установлено, что при электро-

лизе хлоридов получается хлорноватистая соль, которая обладает белящими свойствами. Результаты таких исследований вошли в энциклопедическое издание Брокгауза и Ефрона [4, с. 699].

Кроме этого, А.П. Лидов и В.А. Тихомиров в статье «Образование хлорноватисто- и хлорноватисто-кислых солей из хлористых металлов действием тока» сообщали о своей работе в начале 80-х годов XIX в. В публикации описывается электролиз хлористых натрия и калия с угольными, платиновыми или со свинцовыми электродами. В том же году образцы тканей, отбеленные по новому способу, экспонировались в Москве на художественно-промышленной выставке. О новшестве писали: «По-видимому, способ этот не был разработан для практического применения и был введен лишь для использования в лабораторных условиях» [5, с. 212–213].

В статье А.П. Лидова и В.А. Тихомирова «Беление растительных волокон электролизом» (1883 г.) после демонстрации образца на указанной выставке, наряду с описанием беления посредством хлорной извести описывается и метод электролитического беления. При действии электрического тока на раствор поваренной соли образуются хлорноватистые и хлорноватые соли. Хлор и едкая щелочь, будучи растворимы в воде вступали в реакцию, образовавшую хлорноватистую соль. С повышением температуры она разлагалась на хлорноватую и хлористую соли [6, с. 421].

Процесс беления осуществлялся следующим образом. В раствор поваренной соли (уд. вес 1,204 что соответствует 26% NaCl при 10°C или около 270 г/л) погружали ткань и пропускали ток (электроды угольные, пластинчатые или цилиндрические). Для получения тока применялась динамо-машина Грамма. Температура раствора не должна быть выше 35 °C. В электролите (после пропускания тока) при применении раствора хлористого натрия (26%) в 1 л. раствора содержалось 618 см³ хлора или по весу 8 г., содержание NaClO – 15 г. (1.24%). При применении раствора хлористого кальция уд. весом 1.411 (40% CaCl₂) в 1 л. раствора, после электролиза содержалось 221 см³ хлора [там же, с. 422].

Кроме того в 1882 г. ученые опубликовали статью «Электролиз хлористых солей и беление растительных волокон током», «Действие тока на хлорноватые соли». В публикации указано, что «факт образования хлорноватистонатриевой соли при электролизе поваренной

соли весьма наглядно проявляется в отбеливании полотна, парусины, суровых ниток писчебумажной массы и др.». А.П. Лидов и В.А. Тихомиров доказали, что такой способ беления должен «занять выдающееся место в технической промышленности» [5, с. 341–349].

Тогда еще молодые исследователи сделали доклад о своем способе беления и демонстрировали его присутствующим на докладев Московском отделении Русского технического общества. На этом заседании возникла дискуссия с профессором В.В. Марковниковым (1839 – 1904). Однако, окончательный вывод, по мнению В.В. Марковникова об экономической целесообразности применения способа возможно было бы сделать, только после проведения опытов в большом масштабе. А.П. Лидов и В.А. Тихомиров утверждали, что электролитическое беление выгоднее, чем беление хлорной известью. На 1300 отбеливаемого миткаля экономия (в пользу электролитического беления) составляла 69,5 коп. В «штуке» (куске) миткаля, видимо, было 60 арш. Экономия на один аршин миткаля была весьма малой [7, с. 256 –259].

Первые патенты на ванны с ртутным катодом за рубежом были получены только в 90-х годах XIX в. Однако, способ получения натра (и хлора) в ваннах с ртутным катодом впервые в мире был предложен в Российской империи в самом начале 80-х годов А.П. Лидовым и В.А. Тихомировым. Ученые в своей статье «Некоторые приложения динамо-электрических машин» доказали, что если пропускать ток через раствор поваренной соли, находящейся в электролизере, то ртугь с выделившимся натрием даст амальгаму натрия. После прекращения тока амальгама (Hg+Na) разлагается, выделяя водород, и, следовательно, образует едкий натр. Схема электролизера состоит из цилиндрического сосуда с налитой ртутью. К нему через клемму подводился ток «-». В сосуд, заполненный раствором поваренной соли или хлористым калием, вставляется анод в форме пластины (уголь или цинк). В частности, идея применения электролизера с ртутным катодом принадлежала двум русским испытателям, не претендовавшим на права первооткрывателей этого способа, который, как оказалось в последствии, нашел практическое применение [7, с. 364–365].

Одной из первых фундаментальных работ, что касались структуризации красильных веществ и технологии их изготовления стала монография А.П. Лидова «Естественные органические красители». В исследовании он упоминал такие красители как: кампеш, красное дерево, или фернамбук, сандал, желтое дерево (бразильское), кверцитрон, индиго, вайда (или синило, синячник, фарбовник), крап (толченый корень марены), куркума, вау (или цева), орсель, сафлор, лакмус, хлорофилл, ло-као (китайская зелень), алое, кашу, кино, корень барбариса, алканна, индейская желть, шафран и т.д. Растительные краски в особенности индиго ввозились в конце XIX – в начале XX века на территорию Российской империи из-за границы. Это объяснялось прежде всего трудностями культивирования растений в умеренных широтах, из которых добывались эти краски. Пигменты использовались или совершенно готовые или в виде полуфабрикатов (сандаловое и фернамбуковое деревья) в поленьях или чурках, куркума и другие красильные растения). Дмитрий Иванович Менделеев еще в 1893 г. писал: «Попытка разведения индиго, вайды и других красильных растений в теплых азиатских краях России до сих пор еще малочисленны и преследуются без достаточной настойчивости» [8].

Александр Павлович Лидов неоднократно публиковался в издании под редакцией профессора Д.И. Менделеева «Библиотека промышленных знаний» и тесно сотрудничал с выдающимся химиком. А.П. Лидову принадлежат такие монографии, как: «Беление, крашение и ситцепечатанье. Химическая технология волокнистых веществ» (1900), «Естественные органические краски» (1901). Дмитрий Иванович настаивал на опубликовании «Естественных органических красок» в своем издании: «Милостивый государь, Александр Павлович! Относительно заказанной нами для «Библиотеки промышленных знаний» статьи об естественных красящих веществах, считаю своим долгом сообщить Вам. Первого апреля 1901 г. при окончательных переговорах с издательской фирмой по поводу печати «Библиотеки промышленных знаний» я добыл Вам право на напечатание половины из 10 листов. То есть, 5 листов я могу предоставить Вам для Вашей статьи о естественных красках, если даже Ваша статья займет более пяти листов. Я считаю своим долгом заявить Вам, что гонорар ваш будет выдан только за пять листов. Буду ждать вашего ответа немедленно, а рукописи до 15 мая сего года.» [9, с. 1].

Во введении «Естественных органических красок» Александр Павлович говорит о том, что для получения нужного цвета не обязательно всегда окрашивать ткань красителем, а возможно использование химических реактивов для получения желаемого оттенка. В частности, воздействие различных кислот и щелочей далеко не одинаково на все краски. Преимущественно прочные красители растворяются в кислотах и щелочах без всякого видимого изменения. Есть и такие, которые при таких взаимодействиях окрашиваются в тот или другой цвет. А есть наконец краски, настолько чувствительны к воздействию указанных реагентов, что изменяются даже от ничтожных следов. Также ученый предполагал, что в ближайшем будущем будет осуществлена заменена натуральных красок искусственными: «Наиболее важная естественная органическая краска, ализарин и индиго, в настоящее время заменены уже искусственными, которые дешевле и дают лучшие оттенки цвета, весьма правдоподобно, что потребление остальных красок будет все более и более сокращаться, в виду замены их теми или другими искусственными» [8, с. 3–7].

Монография Александра Павловича Лидова «Естественные органические краски» состоит из таких параграфов: о красках в природе, деревянные краски, другие растительные краски, животные краски, приготовление красильных экстрактов и список использованной литературы. Не смотря на сложность научного материала, его написание было доступным для специалистов, занятых непосредственно производством. В начале публикации А.П. Лидов делает содержательный осмотр состава органических красок, а именно дает некий исторический очерк возникновения понятия о красителях. Ученый дает авторское определение понятиям спектра и различных цветов: «В природе есть тела, поглощающие все цветне сол-

нечные лучи, падающие на них и такие тела представляются нам черными. Другие отражают все лучи и такие кажутся белыми, наконец, третьи обладают способностью разлагать свет, при чем часть лучей ими поглощается, а часть отражается. Они представляются окрашенными в тот или другой цвет. Также, данная поверхность представляется нам красной, когда она отражает лучи, дающие впечатление красного цвета и поглощает все другие. Именно разнообразной комбинацией непоглощающихся лучей и обуславливаются бесчисленные оттенки красок» [там же].

Научные труды профессора имели большую ценность для инженеров-практиков химической технологии конца XIX – начала XX вв., а особенно «Химическая технология волокнистых веществ» (1893 г.). Это было первое научно-практическое руководство по этой специальности в Российской империи. На сколько ценный был этот труд указывает тот факт, что Д.И. Менделеев печатает 2-е издание, как один из томов «Библиотеки промышленных знаний» [10, с. 2, 2 об.].

Именно благодаря научной и практической деятельности Александра Павловича впервые было научно обосновано техническое понятие пигментов. А именно в энциклопедии Брокгауза и Евфрона существует несколько определений этого понятия. Именно А.П. Лидов дал ему техническую характеристику: «Среди многочисленных окрашенных органических веществ есть такие, которые обладают в высокой степени резко выраженной способностью поглощать одни цветные лучи и отражать другие, что несомненно, находится в прямой зависимости от их химического состава и физической структуры. Входя в состав многих растений и животных организмов они представляют характерный внешний признак, служащий для их идентификации. Выделенные в чистом состоянии эти вещества представляют группу, носящую название красильных пигментов» [8, с. 4].

Следя постоянно за иностранной технической литературой, А.П. Лидов считал своим долгом делиться новыми научными открытиями с соотечественниками – русскими техниками. Для большинства из них были по большей части недоступны иностранные журналы. Важно подчеркнуть, что профессор сотрудничал во всех периодических технических изданиях. Его перу принадлежит громадное число статей в «Техническом сборнике», «Нефтяном деле», «Вестник жировой промышленности», «Горнозаводское дело», «Известия Южно-русского общества технологов», и др. журналах. Александр Павлович также участвовал в

подготовке энциклопедических словарей Брокгауза и Ефрона и Т-ва Гранат [11, арк.. 1, 2 об.].

В энциклопедии Брокгауза и Ефрона находятся такие статьи Александра Павловича Лидова: жавелева вода, шарлах, крон, мурексид, вау, выкраски, везувин, ванна белая, вязань, вер-гинье, валлонеа, вапа, розгидрацин, грушка, плюс (кумач), оживка, заварные ситцы, флавин, вызревание тканей (техн.), вытравка, краски органические естественные, крапп, зрельня, сафлор, фиброин, фаянсовое набивание, паранитроанилин, варка красок и др. [12, с. 519–520].

Важно подчеркнуть, что его научное определение «краски органические естественные» совпадает с названием фундаментального труда «Естественные органические краски». В монографии содержится сведенья о всех видах органических красителей, а также о том, из каких растений они добываются. Ученый акцентирует внимание на том, что «Наибольшее количество красящих веществ извлекается из растений; пигмент находится или в листьях, стеблях и цветах (индиго, сафлор), или в коре (кверцитрон), или в древесине (кампеш, желтое дерево), или же в корне (крапп, куркума). В означенных частях растений пигмент большей частью не находится в свободном состоянии, а выделяется только или под влиянием воздуха, или при ферментации». Кроме этого, перечислено все виды известных красителей, которым в дальнейшем дается отдельное определение в других статьях. Некоторым из них даны определения в других статьях автора. Важно и то, что энциклопедические публикации А. П. Лидова имеют приложения, а именно фотографии красящих растений и их описание [13, с. 388–389].

Таким образом, раскрыто значение исследований, производимых А.П. Лидовым в отрасли крашения, ситцепечатанья и отбеливания ткани и его вклад в развитие химической технологии. Александр Павлович Лидов на протяжении своей 42-летней научной деятельности произвел неоценимый вклад в отрасль покраски ткани различными способами. Одна из его главных монографий посвящена классификации органических красителей – «Естественные органические краски» под редакцией Д.И. Менделеева. Его авторству также принадлежит более 30-ти статей по направлению крашения в словаре Брокгауза и Евфрона. Невозможно не отметить его совместные труды с профессором В.А. Тихомиров в области беления и крашения ткани, образцы которой были экспонированы на Московском отделении заседания Русского технического общества и на конференции в Риме.

ЛИТЕРАТУРА

- [1] Ніколаєнко В.І. Національний технічний університет «Харківський політехнічний інститут». Історія розвитку (1885-2010). / В.І. Ніколаєнко, В.В Кабачек, С. . Мешковая та ін. —Х: вид. НТУ «ХПІ», 2010. —408 с.
- [2] Гнип П.І. О.П. Лідов (до 100 річчя з дня народження) / П.І. Гнип // Вісник АН УРСР № 4 [під ред. П. П. Рудницького]. К.: Друкарня Видавництва АН УРСР, – 1953. – с. 71-74.
- [3] Алфавитный указатель к Журналу Русского физико-химического общества [часть химическая] за 1899-1908 гг. (тт. XXXI XL) / [под ред. Ал. Фаворского]. Петроград.: типо-литография М.П. Фроловой, 1915. с. 22-23.
- [4] Лидов Александр Павлович Энциклопедический словарь Брокгауз и Эфрон. Биографии. / [сост. С.А. Венгеров, А.И. Воейкова, Н.И. Кареева и др.]. СПб.: Семеновская Типолитография, 1997. Т. 6. с. 699.
- [5] Журнал Русского физико-химического общества при Императорском Санкт-Петербургском университете / А. Лидов, В. Тихомиров. Образование хлорноватисто- и хлорноватистокислых солей из хлористых металлов действием тока. [под ред. Н. Меншуткина и Д. Павлова]. — СПб.: Тип. В.О. Демакова, 1882. — с. 212-219.
- [6] Журнал Русского физико-химического общества при Императорском Санкт-Петербургском университете / А. Лидов, В. Тихомиров. Заметки по электролизу. [под ред.

- Н. Меншуткина и Д. Павлова]. СПб.: Тип. В.О. Демакова, 1883. с. 421.
- [7] Лукьянов П.М. История химических промыслов и химической промышленности Электрохимическая промышленность. / П.М Лукьянов // Институт истории естествоведения № 6 [под ред. С.И. Вольфковича]. М.: Наука, 1965. с. 256 –259, с. 364-365.
- [8] Лидов А.П. Естественные органические краски / А.П. Лидов // Библиотека промышленных знаний № 5. [под ред. Д Менделеева]. С-Пб.: Тип. акц.. общ. Брокгауз-Ефрон – 1901. – Т. XIX. – 58 с.
- [9] Інститут рукопису Національної бібліотеки України ім. В.І. Вернадського. Ф. 165, Оп. 1, Спр. 35, 1 арк.

- [10] Інститут рукопису Національної бібліотеки України ім. В.І. Вернадського. Ф. 165, Оп. 1, Спр. 8, арк.2-3.
- [11] Інститут рукопису Національної бібліотеки України ім. В.І. Вернадського. Ф. 165, Оп. 1, Спр. 5, арк. 1-3.
- [12] Естественные органические краски Энциклопедический словарь Брокгауз и Эфрон. Биографии. / [сост. С.А. Венгеров А.И. Воейкова, Н.И. Кареева и др.]. СПб.: Семеновская Типолитография, 1997. Т. 6а. с. 519-520.
- [13] Лукьянов П.М. . История химических промыслов и химической промышленности России до конца XIX века. / П.М. Лукьянов // Институт истории естествоведения № 4 [под ред. С.И. Вольфковича]. М.:Академия наук СССР, 1955. с. 388-389.

REFERENCES

- [1] Nikolayenko, V.I National Technical University "Kharkiv Polytechnic Institute". History of the development (1885-2010). / V.I. Nikolayenko, V.V. Kabachek, S.I. Meshkovaya et al. Kh: p. NTU "KhPI", 2010 408 p.
- [2] Hnyp, P.I. O.P. Lidov (from the centenary of the birthday) / P.I Hnyp Bulletin of the ASURSR № 4 [Ed. P.P. Rudnyts-ky]. K.:Typography of the Bulletin ASURSR, –1953. – P. 71 – 74.
- [3] Alphabetical index to the journal of the Russian Physico-Chemical Society [chemical part] from 1899 1908 (vol. XXXI XL) / [ed. Al. Favorsky]. Petrograd: Printing house of M.P. Frolov, 1915 P. 22 23.;
- [4] Lidov Aleksandr Pavlovich, Brockhaus and Efron Encyclopedic Dictionary. Biographies. / [Ed. S.A. Vengerov A.I. Voeikov, N.I. Kareeva et al.]. SPb.: Semyonov's Printing house, 1997. – Vol. 6. – P. 699.
- [5] Journal of the Russian Physical and Chemical Society at the Imperial St. Petersburg University / A.P. Lidov, V.A. Tikhomirov. The formation of hypochlorous and hypochlorite salts from the chloride metal under the influence of the current. [Ed. N. Menshutkin and D. Pavlov]. – St. Petersburg: Printing house of V.O. Demakov, 1882. – P. 212-219.
- [6] Journal of the Russian Physical and Chemical Society at the Imperial St. Petersburg University / AP Lidov, V.A. Tikhomirov. Notes about the electrolysis. [Ed. N. Menshutkin and

- D. Pavlov]. St. Petersburg: Printing house of V.O. Demakov, 1883. P. 421.
- [7] Lukyanov, P.M. The history of the chemical trades and chemical industries. Electrochemical industry. / P.M. Lukyanov // Institute of History of natural science № 6 [ed. S.I. Volfkovich]. M.: Science. 1965. p. 256 259, p. 364 365.
- [8] Lidov, A.P. Natural organic paint. / A.P. Lidov. Library of the industrial knowledge № 5. [ed. D. Mendeleyev]. S-Pt.: Printing house of Brockhaus-Efron Joint Stock Company. – 1901. – Vol. XIX. – 58 p.
- [9] Institute of Manuscripts Vernadsky National Library of Ukraine. – F. 165, D. 1, C. 35, 1 sh.
- [10] Institute of Manuscripts Vernadsky National Library of Ukraine. – F. 165, D. 1, C. 8, sh. 2-3.
- [11] Institute of Manuscripts Vernadsky National Library of Ukraine. F. 165, D. 1, C. 5, sh. 1-3.
- [12] Natural organic paint. Brockhaus and Efron Encyclopedic Dictionary. Biographies. / [Ed. S.A. Vengerov A.I. Voeikov, N.I. Kareeva et al.]. SPb.: Semyonov's Printing house, 1997. – Vol. 6a. – P. 519-520.
- [13] Lukyanov, P.M. The history of chemical craft and chemical industry in Russia until the end of the nineteenth century. / P.M. Lukyanov // Institute of History natural science № 4 [ed. S.I. Volfkovich]. M.: USSR Academy of Sciences. – 1955 – P. 388 –389.

Aleksandr Pavlovich Lidov – one of the first Russian researchers in the field of dyeing textile by organic colour agents in the late XIX – early XX centuries

V.V. Golova

Abstract. The contribution of Alexander Pavlovich Lidov to the research concerning the painting fabric by natural dyes was disclosed. The main direction of the activity the outstanding professor and engineer-technologist on the Kharkov Institute of Technology were shown, namely: calico-printing and whitening by the specific reagents. The urgency of this question for the development of the chemical industry of South Russia was grounded.

Keywords: Chemistry, organic dyes, dyeing, pigment, bleaching, electrolysis