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Abstract. Emphasized in the paper is a fact that an approach proposed in some textbooks in higher algebra for proving existence 

theorems is not correct. To remedy the situation authors propose to introduce into consideration Theorem 1 (its proof is given). The use of 

this theorem is illustrated by the following example: considered is a proof of theorem on existence of a ring of polynomials in one 

variable over a commutative ring with unity. Authors' approach makes it possible to eliminate some logical gaps of the course, provides a 

means for proving the most complicated theorems of the course by unified scheme (in 5 steps), sets force the exposition of theoretical 

material in a manner more precise, clear, structured and comprehensible. 
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Existence theorem is a theorem stating that under certain 

conditions there exists a solution of a mathematical problem 

or there exists a certain mathematical object (such as a 

solution of some equation, a derivative, an expansion of 

some field). Without any doubt, existence theorems are the 

highest achievements of mathematical science, because in 

most cases to investigate a given mathematical object 

(under certain conditions), to establish its properties is much 

more easier than to show that such an object exists at all. A 

proof of such theorems is usually very nice, elegant but at 

the same time quite complicated. Not infrequently search 

for a proof of existence theorem lasts for not even decades 

but centuries; as a result new methods are developed and 

even new fields of mathematical science emerge. 

It is sufficient to recall that such outstanding theorems as 

Fundamental Theorem of Algebra (on existence of complex 

root of a non-constant single-variable polynomial with 

numerical coefficients) and Fermat's Last Theorem (on 

existing of nontrivial integer solution of the equation 

=n n nx y z , > 2n ) are existence theorems. The search for 

strict proof of Fundamental Theorem of Algebra contributed 

to the origin of abstract group theory and field theory, and 

Fermat's Last Theorem spurred the development of ring 

theory (see, e.g., [3, ch. IV-V]). Still unproven and 

unanswered problems as Goldbach conjecture (that every 

even integer greater than 2 can be expressed as the sum of 

two primes) and twin prime conjecture (that there are 

infinitely many pairs of primes whose difference is 2), 

Legendre's conjecture (stating that there is a prime number 

between 
2n  and 2( 1)n  for every positive integer n ) and 

Inverse Galois problem (on existence of a field extension of 

the rational field Q  with a given finite group as Galois 

group) are also existence theorems. 

There are quite a lot of existence theorems in Algebra & 

Number Theory Course. These are theorems asserting an 

existence of representations of expressions in some specific 

forms and theorems on existence of certain algebraic 

objects. From them we set off the following: 

A. Theorem on existing of a ring of polynomials in one 

variable over a commutative ring K  with unity; 

B. Theorem on existing of an extension field of a field K  

in which a given polynomial with coefficients in K  

has a root (Kronecker's Theorem); 

C. Theorem on existence of a field of fractions of an 

integral domain K ; 

D. Theorem on existence of a ring of polynomials in 

several variables over a commutative ring K  with 

unity.  

To develop methods of studying Theorems A.-D. is a 

problem that deserves special attention and in-deep study, 

because of proofs of these theorems being extremely 

complicated and bulky. 

An additional point to emphasize is that in modern 

Higher Algebra textbooks used in the proofs of mentioned 

theorems is an approach, though rightful, but not enough 

well-grounded: a ring (field) L  with required properties is 

constructed not for the given ring (field) K  but for its 

isomorphic image K   (and besides =L K  , although 

by definition an inclusion L K   is needed). 

To clear essence of the problem let us consider, for 

example, the proof of Theorem A. in the textbooks [1, 5, 6]. 

The problem is: given a commutative ring K  with unity, 

prove that a ring of polynomials in one variable over K  

exists. To prove this, a set L  of infinite sequences 

0 1 2= ( , , ,..., ,0,0,...)nf a a a a  where 
ia K  for all 0,i n , 

{0}n N , in which all members starting with some one 

are zeroes (of the ring K ), is considered. On this set 

operations     are defined (by some rules) and then a 

proof of the fact that the triaple 〈     〉 is a commutative 

ring with unity, containing a subring 〈      〉 isomorphic 

to the ring ; ,K   , is carried out. 

〈     〉 

 

; ,K                         〈      〉                   Fig.1  

 

And next ... are isomorphic rings 〈      〉 and ; ,K    

identified and the ring L  is called a ring of polynomials in 
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one variable (RPOV) over the ring K . (Although, in fact, 

the ring L  is a RPOV over K  , because K   is a subring of 

the ring L , and not K ). In other words, this approach 

gives a RPOV not for the given ring K  but for its 

isomorphic image K  . 

But why the existence of RPOV over K   implies the 

existence of RPOV over K ? In the textbooks [1, 5, 6] it is 

argued as follows: ,,since isomorphic rings K  and K   are 

undifferentiated in terms of addition and multiplication 

operations defined on them, we can identify each element of 

the ring K   with its proimage under the isomorphism 

: K K  ; assume ( ,0,0,...) =a a  for any a K . Under 

such identification of elements of the rings K  and K  , the 

ring K  becomes a subring of the ring L ''. Such an 

argument is not correct! Really, since a subring of the ring 

is by definition a subset of the ring set, this implies that the 

set of elements 
ia K  is a subset of the set of sequences 

0 1 2( , , ,..., ,0,0,...)na a a a ! 

To eliminate this logical gap authors propose to 

introduce into consideration the following proposition. 

Theorem 1. Let ; ,K    and 〈      〉 be rings having 

no common elements and let the ring L  contain a subring 

K   isomorphic to the ring K . Then there exists a ring 

; ,L    isomorphic to the ring L  for which K  is a 

subring.  

 Fig.2 

 

Proof. Since K K  , there exists an isomorphism 

:
onto

K K  . Let ( ) =a a K    for all a K  . Consider a 

set 

= ( \ ) ={ | \ }.L K L K x x K or x L K       

Under the conditions of the theorem ( \ ) =K L K   . 

Put a map : L L   in the following way: for an arbitrary 

x L   

( ) = ,
( ) =

\ .

x x if x K
x

x if x L K




  
 

   
 

Since ( \ ) =K L K    and the mapping : '
onto

K K  is 

a one-to-one correspondence, it follows that the map   

from the set L  onto the set L  is also a one-to-one 

correspondence. 

On the set L  for all elements in K  operations   and   

are already defined. Define operation on L  in such a 

manner that they agree with ones defined on K . Let ,x y  

be arbitrary elements of L , ,x y   be their proimages under 

the map  , i.e. = ( )x x  , = ( )y y  . Set 

            ,                   . (1) 

Operations introduced in such a way agree with 

operations defined on K . Indeed, if ,x y K  then in K   

there exist elements ,x y   such that = ( )x x  , = ( )y y  , 

x y K    , and hence  

( ) = ( ) = ( ) ( ) = .x y x y x y x y             

Similarly ( ) =x y x y   e .              

Show that the operations   and   are binary algebraic 

on L . Indeed, for arbitrary ,x y L  their proimages x  and 

y  under the map   in L  exist (since   is a one-to-one 

correspondence from L  onto L ). The operations   and 

  are binary algebraic on the set L  therefore the element 

x y   always exists, is unique and belongs to L . But then 

the element ( ) =x y x y     also exists always, is unique 

and belongs to L . This means that the operation   is 

closed, has exactly one output and always can be done (i.e. 

is binary algebraic) on L . Analogously the operation   is 

binary algebraic on L . 

Show that   is an isomorphism from L  onto L . Since 

  is one-to-one map from L  onto L , it remains to show 

that   preserves operations. Taking into account the setting 

of the operations   and   on L  (1), for arbitrary 

,x y L    we have:  

( ) = where = ( ), = ( ),x y x y x x y y        

i.e. ( ) = ( ) ( )x y x y       .  

Similarly                     . Thus   preserves 

operations, so that by definition   is an isomorphism from 

the ring 〈      〉 onto the set L . Since on L  operations 

  and   are binary algebraic, by proposition 5.3.2 ch.II [3] 

; ,L    is a ring. 

Thus the constructed ring ; ,L    is isomorphic to the 

ring 〈      〉 and contains the subring ; ,K   . Theorem 

is proven. 

In view of this theorem, to prove for the given ring K  an 

existence of some ring L  possessing required properties it 

is sufficient to show that there exists a ring L , which has a 

subring K   isomorphic to K  and with respect to K   

possesses required properties. 

Moreover, introduction of this theorem is of high value 

from the methodological point of view for it gives a 

possibility to prove Theorems A.-D. by the same scheme (in 

5 steps). Namely, to prove an existence of some ring L  for 

the given ring K  one need only: 

I. To construct a ring L  (to consider some set, to define 

operations   and   on it and to show that 〈      〉 is 

a ring). 

II.To select some subset K   of the ring L  and to show that 
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K   is a subring of the ring L . 

III. To prove that K K  . 

IV. To show that the ring L  possesses required properties 

with respect to K  . 

V. Taking into account Theorem 1, to assert that there exists 

a ring L  which has required properties with respect to the 

ring K .  

The scheme of proof should be formulated separately. 

Accentuated scheme enables a partially-searching 

method to be used to consider the proof of Theorems A.-D. 

Heuristic conversation when students actively assist in 

proving some steps, intensifies cognitive activity, leads to 

insight of learning material, helps to identify causal 

relationships and to evaluate arguments critically, creates an 

atmosphere of general interest, influences positively on the 

development of thinking. 

It is necessary to emphasize particular value of the 

demonstration of Figure 2. As psychologists' investigations 

indicate, for a considerable percent of people an imaginative 

thinking predominates over an abstract one, it is difficult for 

them to perceive an abstract material without relying on 

images. There are such people among mathematicians as 

well (in particular, among many geometers). For such 

students visual interpretation of abstract algebraic relations 

and dependencies is just a necessity. And generally 

speaking, as correctly notices V.S.Rotenberg [2], ``thinking, 

free of imagery elements, has a risk to become dry, formal. 

Learning, not addressed to imaginative thinking, not only 

doesn't contribute to its development, but eventually 

suppresses it''. 

Figure demonstration should start considering each of 

Theorems A.-D. In such a way, figure acts as a guiding line 

for theorems proven by scheme I-V. 

As an illustration of approach proposed, let us consider 

Theorem A. 

Introduction of the statement of Theorem A. is carried 

out using the abstract-deductive method: theorem is 

formulated by a lecturer. At the same time, a need of 

consideration of this proposition should be convinced, for 

example, as follows: "As we see, if for the ring K  there 

exist some ring L  containing K  as a subring and some 

transcendental over K  element, then for the ring K  a ring 

of polynomials in one variable over K  exists. Up till now, 

we considered only a case when the ring is given in 

advance. But does such ring L  exist for each ring K ? 

Indeed, the following theorem is valid". Formulate a 

statement of the theorem: 

Theorem A. For any commutative ring K  with unity a 

ring of polynomials in one variable over K  exists. 

We propose to organize exposition of the proof in the 

following way. At first, show schematically:   

1) a given ring K ;  

2) a ring L  (so that =L K  );  

3) a ring K   (shaped like K)  (Fig. 3);  

4) an isomorphism   from the ring K   onto the ring K   

(Fig. 4);  

5) draw a ring L , which existence has to be proven, 

stippled (Fig.5).  

 Fig. 3 

 Fig. 4 

 Fig. 5 

 

A lecturer stresses that Theorem A. and similar ones will 

be proven by scheme I-V. When considering Theorems A.-

D. students immediately after the figure demonstration 

propose the proof scheme. 

 

I. Construct a ring L .  
A set L  and operations     on it are defined by a 

lecturer. But to show that, really, the set L  under the 

operations   and   is a ring (field), students are able. 

They know two main ways to check if a given 

algebraic structure , ,L  e  is a ring (field): by 

definition of a ring (field) and by subring (subfield) 

criterion. The lecturer asks: "How one can prove that 

〈      〉 is a ring?" and then emphasizes that the 

subring (subfield) criterion is not applicable in this 

case: a ring 〈     〉 such that M L  is unknown. 

Checking the ring (commutative with unity) axioms is 

carried out collectively. 
Let K  be a ring with operations   and  , 0  and 1  are 

a zero and a unity of the ring K  respectively. Consider a set 

L  of all infinite sequences  

0 1 2= ( , , , ) where for all = 0,1,..., ,...iF a a a a K i n  

every sequence consisting of zeros from some term onwards 

(this term may be different for different sequences). Clearly, 

L   . 

Two sequences 0 1 2= ( , , , )F a a a  and 0 1 2= ( , , , )G b b b  

are assumed to be equal iff =i ia b  for all = 0,1,2,...i . 
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On the set L  define operations   and   in the 

following way: for arbitrary two elements 

0 1 2= ( , , , )F a a a  and 
0 1 2= ( , , , )G b b b  of the set L  put:  

                         

0 0 1 1 2 2= ( , , , )F G a b a b a b    ; 

0 1 2

=0

= ( , , , ) where =
k

k i k i

i

F G d d d d a b e  

=

(or in the other form = )
k

k i j

i j k

d a b


  

Show that 〈      〉 is a commutative ring with unity. 

We have: 

1) The operation   is binary algebraic on L  since it can 

always be done and has exactly one output (this follows 

from the fact that the operation   can always be done on 

K  and has exactly one output). Next, the operation   is 

closed on L  since 
i ia b K   for all = 0,1,2,...i  and the 

sequence F G  consisting of zeros from some term 

onwards. (Indeed if for sequences F  and G  conditions 

1= = ... = 0r ra a   and 1= = ... = 0l lb b   hold then for 

= max{ , }s r l  we obtain: 
1 1= = ... = 0s s s sa b a b   ). 

2) Let 
0 1= ( , ,..., ,...)iH c c c L . The operation   is 

associative on L : 

        (              (             )  

                                      

(             (                   

                 )                     

  )           )            , 

since the operation   is associative on K . 

3) An element = (0,0,...,0,...)O  is a zero of L . 

4) An element 0 1= ( , ,..., ,...)iF a a a  !  is an additive 

inverse of F  in L . 

5) The operation   is commutative on L :  

0 0 1 1 0 0 1 1= ( , ,..., ,...) = ( , ,..., ,...) = ,i i i iF G a b a b a b b a b a b a G F       

since the operation   is commutative on K . 

6) The operation   is binary algebraic on L  since it can 

always be done and it has exactly one output (because the 

operation   can always be done on K  and has exactly one 

output). And also it is closed: if kd  is a k -th member of the 

sequence     then 
=0

=
k

k i k i

i

d a b K  .  

Besides, if 1= = ... = 0r ra a  , 1= = ... = 0l lb b   then 

0 1 1 1 1 0

=0

= = ... ... = 0
k

r l i r l i r l r l r l r l r l

i

d a b a b a b a b a b a b               

and analogously 1 2= = ... = 0r l r ld d    . 

7) Let 0 1 2= ( , , ,...)H c c c L . Then                  

where 
=

=k i j

i j k

d a b


  and 

                                  
              

where 
= = = =

= = ( ) = ( )s k l i j l i j l

k l s k l si j k i j l s

u d c a b c a b c
    

    .  

From the other hand,                  where 

=

=k j l

j l k

q b c


  and  

                                  
              

where 
= = = =

= = ( ) = ( ).s i k i j l i j l

i k s i k s j l k i j l s

v a v a b c a b c
    

     

Since the operation   is associative on K , namely 

( ) = ( )i j l i j la b c a b c  for all , , {0}i j l N , then =s su v  for 

all = 0,1,2,...s , hence                . 

8) The operation   is distributive over the operation  . 

Indeed, if  

                                
             

where 
=0

= ( )
k

k i k i k i

i

p a b c  , 

                                      
              

where 
=0

=
k

k i k i

i

d a b  , 
=0

=
k

k i k i

i

w a c  , =k k kz d w , 

then 
=0 =0 =0

= = = ( )
k k k

k k k i k i i k i i k i i k i

i i i

z d w a b a c a b a c        . 

Since the operation   is distributive over the operation   

on K , we have = ( )i k i i k i i k i k ia b a c a b c     , this implies 

=0 =0

= ( ) = ( ) =
k k

k i k i i k i i k i k i k

i i

z a b a c a b c p       for all 

= 0,1,2,...k  Thus                    . 

9) The operation e  is commutative on L  since if  

                 

where 
=

=k i j

i j k

d a b


 , and                  

where 
=

=k j i

j i k

m b a


 , taking into account that the operation 

  is commutative on K  we obtain that  

= =

= = =k j i i j k

j i k i j k

m b a a b d
 

   for all = 0,1,2,...k  

10) The sequence = (1,0,0,...)E  is a unity. 

Since K  is a ring with unity, this implies 1 0 , 

therefore O E . By definition 〈      〉 is a commutative 

ring with unity. 

 

II. As an experience shows, in proving Theorem A. 

students aren't able to select a subset K   of the ring L  

satisfying the conditions: 1) 〈      〉 is a ring and 

2) K K  . Perhaps, an intuition will suggest the right way 

in proving Theorems B.-D., but it is unlikely to occur 

dealing with this kind of proof for the first time (in addition 

to that the operation e  is defined a bit unusual, bulky). 

Therefore a subset K   is suggested by a lecturer. But on the 

other hand a proof of K   to be a subring of the ring L  is 

conducted collectively. 
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In the ring L  select a subset K   consisting of the 

elements ( ,0,0,...)a . Show that K   is a subring of the ring 

L . Since K     (e.g., O K  ), use a subring criterion. 

Let ,A B K  , then = ( ,0,0,...)A a , a K , 

= ( ,0,0,...)B b , b K . We have:  

1) = ( ,0,0,...)A B a b K    since a b K  .  

2) For the element A  in L  the element 

= ( ,0,0,...)A a!  is an additive inverse. Since 

a K   it follows that ( ,0,0,...)a K   .  

3)                  since ab K .  

The conditions 1)-3) of the subring criterion are satisfied, 

therefore K   is a subring of the ring L . 

 

III. Show that the ring K   is isomorphic to the ring K . 

What element of K  is a sequence ( ,0,0,...)a  from K   

to be mapped into? Naturally the first idea is to check if the 

map   defined by the rule:  ( ,0,0,...) =a a  is an 

isomorphism. Algorithm to check (by definition) is known 

to students, they actively help. 

1) for an arbitrary element ( ,0,0,...)a K   its image 

 ( ,0,0,...)a  belongs to K  (by setting of the rule  ); 

since ( ,0,0,...) = ( ,0,0,...)a b  iff =a b , the image 

 ( ,0,0,...)a  is unique; 

2) for an arbitrary element c K  the element ( ,0,0,...)c  is 

its proimage in K  ; 

3) let ( ,0,0,...),( ,0,0,...)a b K   then  

   ( ,0,0,...) ( ,0,0,...) = ( ,0,0,...) = ,

(( ,0,0,...) ( ,0,0,...)) = ( ,0,0,...) = ;

a b a b a b

a b ab ab

 

 

  

e  
 (                   )   (           )     , 

 (                   )   (          )    ; 

4) let ( ,0,0,...),( ,0,0,...)a b K  , ( ,0,0,...) ( ,0,0,...)a b . 

Then, taking into account the condition of two sequences to 

be equal, a b , hence    ( ,0,0,...) ( ,0,0,...) .a b   

By definition,   is an isomorphism from the ring K  onto 

the ring K  , i.e. K K  . 

It is relevant to remark that although proof algorithms for 

steps I-III (namely, checking axioms of the ring definition 

(I), conditions of the subring criterion (II), axioms of 

homomorphism definition (III)) are well known to students, 

it is not advisable to leave these steps to independent study. 

The way to organize notes when proving Theorem A. 

should be a pattern to theorems having proof by scheme I-

V. Moreover, thorough, detailed proof provides education 

links between individual chains of proof. 

 

IV. Show that the ring L  is a ring of polynomials in one 

variable (RPOV) over K  . 

At this stage, no sufficient condition is known for 

students apart from definition, therefore the right way to 

prove (checking the conditions of the definition) is 

immediately offered by them. 

Remark that in most textbooks the definition of RPOV is 

introduced implicitly (that is the content of RPOV concept 

is established through context): primarily a set [ ]K x  is 

constructed, then it is proven that [ ]K x  is a ring (under 

some operations), the ring obtained is called a ring of 

polynomials in one variable x  over K  ([1,5,6]). This 

definition does not give a direct indication of essential 

characteristics of RPOV concept. 

There is no single, unified approach to introduction of 

RPOV concept, also there are different RPOV definitions. 

For example, in the textbook [6] for RPOV over K  a 

simple transcendental extension of the ring K  is called, in 

the textbook [5] -- a ring of sequences is termed. 

Accordingly, different conditions are set for checking. 

In this paper we take as a basis an authors' approach to 

introduce RPOV concept (which was proposed in [4]). In 

accordance with it, given a commutative ring K  with unity, 

a ring of polynomials in one variable x  over K  is a ring 

[ ]; ,K x    possessing the following properties:  

1) [ ]K x  contains the ring K  as a subring;  

2) in [ ]K x  there exists a transcendental over K  element x ;  

3) each element f  of the ring [ ]K x  can be presented in the 

form 
0 1= ... n

nf a a x a x    where ia K  for all 

= 0,1,...,i n , {0}n N .  

The conditions 1)-3) are reproduced by students and a 

lecturer concretizes them on the case of Theorem A.: to 

prove that constructed ring L  is a RPOV over K  , it is 

sufficient to show that:   

1) L  contains K   as a subring;  

2) in L  there exists a transcendental over the ring K   

element X ;  

3) an arbitrary element f  of the ring L  can be presented 

in the form                  where 
ia K  

where iA K   for all = 0,1,...,i n , {0}n N .  

Validity of condition 1) is already established (p.II). It 

remains to check if the conditions 2) and 3) hold. The most 

difficult thing here is, certainly, to choose a transcendental 

element X . Problem exposition can be organized, for 

example, in the following manner. 

Lecturer: What elements of the ring L  aren't 

transcendental over K   definitely and therefore they cannot 

be chosen for X ? 

Students: Elements of the ring K  . 

L: That is, elements of the form  

S: 0( ,0,0,0,...)a  where 0a K . 

L: Thus a transcendental element should be searched 

among sequences having at least one coordinate ia , 0i  , 

nonidentity. Let's investigate some sequence of such kind. 

For example, try the element (0,1,0,0,...) . 

(Remark that in such a way there is also a possibility to 

emphasize that actually in L  not only one transcendental 

over K   element may exist). 

L: How to determine if the element = (0,1,0,0,...)X  is 
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algebraic over K   or transcendental? 

S: To consider the equality  

       ⨂ ⨂        (2) 

where 
iB K   for all = 0,1,...,i m . 

L: Expand this equality. Since 
iB K   then  

= ( ,0,0,...)i iB b  for some ib K . Find the powers iX . 

We have: 

                                            , 

                                  
                   

What is iX  in your opinion? 

S: = (0,0,...0,1,0,...)i

i

X . 

L: Let's prove it. We may proceed 

S: by induction. 

Show that = (0,0,...0,1,0,...)i

i

X  for all iN . For =1i  

this equality is valid. Assume that for 1 1i    the following 

holds: 1

1

= (0,0,...0,1,0,...)i

i

X 



. Then  

                    ⏟    
   

              ⏟    
 

        

By principle of mathematical induction the equality is valid 

for an arbitrary iN . 

L: Now find the product      : 

                        ⏟    
 

        

        ⏟    
 

         

Then 

                
                                ⏟    

 

         

                 
From (2) we have: 0 1( , ,..., ,0,...) = (0,0,...)mb b b  whence 

0 1= = ... = = 0mb b b . Then = (0,0,0,...) =iB O  for all 

= 0,1,2,...i . Thus the equality (2) is possible if and only if 

0 1= = ... = =mB B B O . This means that  

S: X  is transcendental over K  . 

L: Thus the condition 2) of RPOV definition holds. 

Show that the condition 3) is valid. 

3) Let 0 1 2= ( , , ,...)F a a a  be an arbitrary element of the ring 

L . If =F O  then proposition is correct (for example, 

under = 0n  and 
0 =A O ). Let F O  then there is an 

index {0}n N  such that 0na   and 

1 2= = ... = 0n na a 
. We have:  

               

                         (       ⏟    
  

       )

                 

where = (0,0,...,0, ,0,...)i i

i

A a K   for all = 0,1,...,i n . 

The condition 3) of RPOV definition holds, thus L  is a 

ring of polynomials in one variable over K  . 
 

V. To complete the proof, it is sufficient to refer to 

Theorem 1. 

Since K K   (p.III), by Theorem 1 there exists a ring 

L  such that L L , for which K  is a subring. The ring L , 

in view of p.IV, is a ring of polynomials in one variable 

over K . The theorem is proven. 

For students to master the proof, when ending with its 

consideration a lecturer briefly repeats an analysis of the 

proof structure emphasizing those mathematical facts that 

were used to argue each step by itself (of course, it is 

advisable to involve students at most in discussions). Final 

discussion promotes conscious perception of the proof, 

provides fundamental understanding of the main 

relationships in general. 

Note that in consideration of the proof of existence theorem 

the use of partially searching method is not even desirable but 

just needed. Such extensive proof without discussion will 

scare off students, they will copy notes from the blackboard 

without trying to catch an idea. This will be just a waste of 

time (for, as it is known from the psychological 

investigations, to make two kinds of activity each requiring 

full concentration – to take notes and to penetrate into the 

essence of the proof – is impossible). On the contrary, 

accentuated proof scheme with the instructions on the way of 

proof for each separate step and the propositions used allows 

one to reduce such complex proof to the consideration of 

standard problems with a method of solution well-known for 

students. These are such problems as: 

Problems: Method of solution: 

1. Show that 〈      〉is a ring (field). By ring (field) definition: 

Show that the axioms of the ring (field) definition are valid. 

2. Show that a subset K   of the ring 〈      〉is a subring 

(subfield) of this ring (field). 

By subring (subfield) criterion: 

Show that the conditions of the subring (subfield) criterion are fulfilled. 

3. Show that a subring (subfield) K   is isomorphic to the 

given ring (field) K . 

By isomorphism definition: 

put a map : K K  ; 

show by definition that   is an isomorphism from the ring K   onto the 

ring K . 

4. Show that L  possesses properties required with respect to 

K   (i.e., L  is RPOV over K  ). 

By definition (RPOV,…). 
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As we see, the approach proposed:  

1) gives broad possibilities to enhance students' cognitive 

activity, use of partially-searching method promotes 

creative activity (herewith one should not think that 

accentuated scheme of proof of Theorem A. depresses 

creativity – straight conversely, as psychologists' 

investigations show, mastering algorithms creates the 

conditions for creativity and helps in solving creatively, 

nonstandard problems);  

2) proof structuring, accentuated scheme of proof 

promotes more conscious assimilation of the proof and 

provides general understanding of connections between 

individual steps of the proof;  

3) allows to reduce complex proof to the consideration of 

the set of standard problems;  

  and, what is especially important, 

4) eliminates a logical gap of the course arguing a 

possibility to prove some propositions not for the given 

algebraic objects but for ones isomorphic to them (a method 

of attack widely used in modern algebraic science).  

Experience shows that only the first theorem proven in 

the way proposed (namely, Theorem A.) is hard for 

apprehension. Therefore it is better to consider it in the first 

semester. In exam preparation students will have 

appreciated the proof, will have understood its idea. Practice 

identifies that when considering the remaining theorems 

(theorems A.-D.) in the second semester students actively 

assist. Once a lecturer shows the picture-guide, the proof 

idea appears (by the scheme I-V), students formulate the 

scheme of proof and then prove its separate steps (solving, 

in fact, standard problems 1-4 mentioned above). 

Difficult Theorems A.-D. deserve students' special 

attention and deep study in exam preparation. Therefore in 

our opinion it's quite reasonable to divide theorems 

submitted for the exam in the 2-nd semester into 2 groups 

(the first one containing the simpler theorems while the 

second one -- more complex) and correspondingly to 

provide different evaluation of the answer (to give more 

points for the proof of more complicated theorems). It may 

seem strange, but most students demonstrate better 

knowledge and understanding of more complicated 

theorems (including Theorems A.-D.) than of simpler ones. 

They say that senior students have advised them to pay 

special attention to Theorems A.-D., because it is quite 

enough to understand once the proof idea and then to use 

the scheme to prove as many as four theorems. 

The major points covered by this paper may be 

summarized as follows. Emphasized in the paper is a fact 

that the approach proposed in some textbooks in higher 

algebra for proving existence theorems is not correct. To 

remedy the situation authors propose to introduce into 

consideration Theorem 1 (its proof is given). The use of this 

theorem is illustrated by the example: considered is a proof 

of theorem on existence of a ring of polynomials in one 

variable over a commutative ring with unity. The approach 

proposed makes it possible to eliminate some logical gaps 

of the course, provides a means for proving, in particular, 

Theorems A.-D. by the unified scheme (in 5 steps), set force 

the exposition of theoretical material in a manner more 

precise, clear, structured and comprehensible. 
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Требенко Д.Я., Требенко О.А. Теоремы существования в курсе алгебры и теории чисел 

Аннотация. В статье акцентировано внимание на некорректности предлагаемого в некоторых учебниках по высшей алгебре 

подхода для доказательства теорем существования. Для устранения отмеченной некорректности авторы предлагают ввести в 

рассмотрение теорему 1 (и приводят ее доказательство). Использование данной теоремы показано на примере  доказательства 

теоремы о существовании кольца многочленов от одной переменной. Предлагаемый подход позволяет устранить некоторые 

логические  пробелы курса, дает возможность доказывать, в частности, отмеченные теоремы А.-D. по единой схеме (в 5 этапов), 

делает изложение учебного материала более  четким, структурированным и понятным.  

Ключевые слова: теорема существования, построение кольца многочленов 
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