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Abstract. The work considers the multiprocessors technologies of modeling for Monte Carlo tasks. It is shown that only application
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Introduction. Among the variety of calculating methods
in the modern mathematical solutions it is possible to put
attention on the methods such as Monte Carlo [5, 6]. This
name unites the group of the calculative methods based
on receiving the great amount of the stochastic process
realizations. This process demands that its probability
could correlate with the analogical values of the solved
problem. Monte Carlo methods are widely used in areas
of physics, mathematics,economics, optimization, man-
agement etc. The national works based on the Monte Car-
lo methods appeared in 1955-1956. Since that time a lot
of the scientific works describing the above mentioned
method were written [1-4, 7, 8]. Even the superficial
glance shows the efficiency of the Monte Carlo method
for solving of applied tasks in the different science and
techniques areas. Thus now these methods are applied for
solving for some classes of the differential equations in
the partial derivatives, integral equations, problems of the
eigen-values and linear algebraic equations. The im-
portant feature of the Monte Carlo method is its experi-
mental characteristics. We will call this name the proce-
dure including the use of ways of statistic sampling for
the approximate solving of the mathematical and physics
problems.

Among all methods the Monte Carlo had and has the
influence on the development of the methods of applied
mathematics, e.g. on the development of the methods of
numerical integrating. It also effectively coincides with
other calculative methods and makes addition for them. It
is widely used especially for the tasks having the theoreti-
cal-probable description because of the definite simplifi-
cation of the solving.

Monte Carlo method is widely used for its simplicity
and universality. Low approximation is the essential
shortcoming of the method but in this work we will de-
scribe its modifications which provide the high order of
the convergence; which is possible with the help of spe-
cial assumptions. Though the calculating procedure be-
comes more complicated. Monte Carlo approximation is
the approximation based on probability. It is known that
the approximate methods are often used for solving the
practical tasks.

At least we admit that solution accuracy of this method
depends on the quality of the generator of the random
values that describes the analyzed process and also on the
productivity of the so called calculator. Today the tact
frequency of the modern processors is higher than Giga-
bytes and the volume of the RAM of the PC is also very
large. Taking in account that the definite class of tasks
will be developed on the personal calculating cluster the
calculator productivity is not a problem for solving for
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calculating algorithms used to solve multi dimensional
tasks. The practical example of the mechanism for apply-
ing this method and some special features of its realizing
will be considered for the typical thermo — physical tasks.

Specialty of realization of the parallel calculations
with the Monte Carlo Method. Among the other numer-
ical methods the main role plays the Monte Carlo Method.
We have to point that this method helps to get the closest
solution of the task in one fixed point without knowing
the solution for other points of the grid. This differs the
Monte Carlo Method especially for solving the Dirichlet
problem from other well-known ways. The simplified
scheme is shown on the Fig.1.

Random
number

A 4

Calculator Analyzer

generator

Fig.1. Scheme of calculations with the Monte Carlo Method

Application of this method gives the possibility to re-
view the idea of making nonparallel calculations and us-
ing the cluster technologies. Intermediate results may be
obtained independently on the different levels and the fi-
nal results should be arranged on any separate master -
blade or analyzer. Fig.2 shows the algorithm of parallel
calculations.

Calculator
(Blade 1)

Calculator

Random (Blade 2)

Analyzer
(Master

Blade)

number
generator

—>

Calculator

Calculator
(Blade 1)

Fig.2. Scheme of parallel calculations

According to this scheme one generator of the random
numbers outputs one random value to each "calculator".
Information is permanently transferred via latent chan-
nels. So the productivity will be low as well as the data
speed. Experience of operating of the calculating cluster
for such schemes made it available to perfect the scheme
on the Fig. 2.

The Fig.3 shows the modified algorithm of calculations
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with Monte Carlo Method. Every user has its own genera-
tor of random values. This fact allows to escape the pres-
ence of the router communicator. This decision definitely
accelerates the calculating process. The productivity may
be evaluated experimentally.

Random number __p| Calculator
enerator 1 (Blade 1)
Random number Calculator ||
generator 2 (Blade 2) L Analyzer
(Master
Blad
Random number || Calculator | — 299
generator 3 (Blade 3)
Random number |y Calculator
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Fig.3. Modified algorithm of parallel calculations based on
Monte Carlo Method

Thus Monte Carlo Method based algorithms are the
stable relating to any input data, have the maximal paral-
lel form and the minimal time for realization of calcula-
tions.

Investigation of efficiency of the cluster system
simulation of tasks by the Monte Carlo Method

Analysis of the problem of search and solution for
boundary value problems. Boundary problems and prob-
lems with initial conditions for linear differential equa-
tions are the one of the most interesting areas of using the
Monte Carlo Method.The connection between two types
of these problems is known for long time [2 — 4, 7 — 9].
But only the computers' appearance gave the possibility
of using this connection for finding the results of this
problem.

To clear the main idea of the method we consider the
Dirichlet problem for Laplace equation.We have the defi-
nite G-area on which boundary the function f(Q) is de-
fined. We have to find the function U(P) that satisfies the
Laplace equation:

AU =0, 1)

on boundary of area P accepts values:

U, =f@Q: )

Generally this problem is brought to a finite-difference
scheme. G-area is covered by the square grid nodes. We
look for values of the function U(P) from the following
system.

— U +UR) +U R +U(R)]-O)

Symbols {P; P,, P3, P,} mean four nodes next to the
internal node P: they are arranged inside the G-area or on
its bound.

We consider the theoretical probable scheme which is
connected with the problem. Imagine the participle that
has to move between the grid nodes with integer coordi-
nates (i, j) on the area:

U (P)
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X =X i, Yy =Yo+ in
(i,j=0,+1,+2,...)
and the stepis AX; = X, = X, AY; =Y, -Y;

Let's say that the grid of S, consists of internal and
boundary nodes in which boundary conditions of the first
kind are set. Boundary nodes represent a set of the linear
points of Myg(XpYq) Which approximate the curvilinear I”
boundary of the area G which approximate the curvilinear
boundary of the area G to with accuracy #.The particle M
realizes the uniform accidental movement between nodes
of the grid. In particular, being in the internal node Migjo
of a grid S,, this particle for one transition with identical
probability equal to ¥4 can move to one of adjacent nodes.
In particular in Mi.q(Xi,Y;), one step back, in Misyj(X;+,,
y;) one step to the right, in M;.1(x;, y;-,) -one a step down
or Mij+1(Xi, ¥j +,) - one step up. Each such transition is ab-
solutely accidental and doesn't depend on the position of a
particle and its previous relocation. Let's allow that relo-
cation of A/ will end as soon as it reaches the boundary 77,
In this case I, is "the absorbing screen”. It is possible to
prove [4] that M relocation through a finite humber of
steps will finish on this boundary.

If the particle of M began the relocation with the fixed
point of Mjgjo on the grid S, that can be written as:

Miojo, Mivj1, ... Misjs,

and

M, ©7In(k=01..,S-1).

i I
Here expression I\/Iikjk = I'n displays a particle path

in case of quantity of steps equal to S. This value is ac-
cepted to be called "history of relocation™.

Uniform accidental relocation of a particle can be or-
ganized by means of uniformly distributed sequence of
random numbers [1 — 4, 7] which are equal to: 0, 1, 2, 3,
4,5/6,7,8,9.

For this purpose it is enough to carry out random check
from numbers (0 — 9), adhering to the instruction shown
in the table 1.

Table 1.
Determination of the particle step depending on a
random number

Random number Determination
Oor4 Ax; =1 (step right)
lor5 AYy = (step up)
20r6 AAXx; = —n (step left)
3or7 AAYy = — 1 (step down)

Random numbers are taken from the ready tables or
turn out by the pseudorandom number generator [2]. The
last method became popular as it doesn't allow to over-
load the system memory. The particle which has begun
relocation from a point Mjgjo after the first step will occur
in one of the nodes

s

|. Mi.j1 Mi—l,j;

Il. Mi,j: i+1,jp e s
1 Mi,jy Mi,j-l, veey s
IV. Mij, Mijsg, ...

- 1_ .. .
P(I!Jv pvq):ZP(l_le plq)+

1. .. 1. . 1., . 4
+ZP(|+1,j,p,q)+ZP(|,J—1, p,q)+ZP(|,J+1, p,q).
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Having multiplied two members of equation (4) on
boundary values y,q and having summarized all possible p
and q values, we will receive.

1
4 :Z(‘gi-u +8 i+t ). 6

Values Ujj allow the experimental determination, for

this purpose it is necessary to replace mathematical ex-
pectation by empirical. Then expression will look as:

1 w
Uy = 2000 y8). ®
k=1
The formula (6) gives a statistical assessment of values
U i, j and can be used as the best approximation to the so-
lution of the Dirichlet problem.
Example 1. To find value U(2, 2) with the application
of the Monte Carlo method where
AU (%, y) = 0, inthe area
G{0<x<4;0<y<4}(7)
and conditions are:
U((x,0)=0, 0<x<4;
U@, y)=y, 0<sy=<4; (8
U(x,4)=x, 0<x<4;
U@,y)=0, 0<sy<4.
Table 2.
Trajectory of the motion for the working point

Value of the function

Number of . . N
- Trajectory of wanderin u(x,y) at exit point on
motion, k J g ’ ( yt)he bordeF; G
(22)>(3)>(2,2)>(2,1) >
1 >(3,1)>(3,2)>(3,1)>(3.2) > 0
>(2,2)>(2,3)>(2,3)>(2,2) >
>(2,1) > (2,0);
2 (2,2)>(23)>(3,3)> (3,2 > 9
> (4,2);
3 (2,2)>(2,3)>(2,2) > (2,3) > ?
> (2,4);
4 (2,2)>(1,2) >(1,2) > (0,2); 0
5 (2,2) > (2,3) > (2,4); 2
6 (2,2) > (2,1) > (2,0); 0
(22)>(1,2)>(2,2) > (3,2) >
7 >(3,1)>(3,2)>(2,2)>(1,2) > 0
> (0,2);
8 (2,2) > (1,2) > (0,2); 0
(2,2)>(2,1)>(2,2)>(3,2) >
9 >(3,3)>(3,3)>(23)>(1,3) > 0
>(0,3);
10 (2.2)>(1,2) > (0,2); 0
(2,2)>(2,2)>(2,2)>(2,1) >
11 >(2,2)>(32)>@3,1)>31) > 1
> (4,1);
2,2)>(2,2)>(21)>(21)>
1 @2)>e2)> 2h> @) o
13 (2,2)>(2,1) >(3,1) > (3,0) ; 0
14 (2,2)> (32) > (4,2); 2
15 (2,2) > (2,3) > (2,4); 2
16 (22)>23)>23)> (13> 0
> (0,3);
17 (2.2)> (3.2 > (4.2); 2
18 22)>(32>3Bn>@21)> 3
>(2,2)>(3,2) > (4,2);
19 (2.2)> (32 > (4,2); 2
20 2.2)>(23)>(23)>(23)> )
> (2,4);
py 20

101

Solution. For the square G with the boundary T" we
will build the square grid S with the step n =1. Coming
from the initial position (2,2) the movement finishes on
the boundary 7" in the area G,, at the given conditions (8)
(see table 1). Appearance of numbers 8 and 9 we consider
as a stop on one place.

Table 2 shows trajectories of 20 histories for two-
dimension random movement at N = 20.

Due to (8) we get that:

1 1
U(22) =55 Zp(yd =55-20=1
k

20
In this case the exact solution of the Dirihlet problem is
known (7, 8):
Xy
U , — ).
xy) ==,
Thus
2.2
U2 =="==1
(2,2) 7
This is a way we received the exact solution for U(2,2)
applying the statistic method.

Example 2. Let us consider the task of the temperature
field for the coal adiabatic [10]. This field T(x,y) has to
match the equations

FT
8)(2

oT
=+ ? ==

and also the system of randomly selected boundary
values of temperature:

0. 9)

F, (x) along theborder y =2,
F, (x) along the border y =0,
G, (y) along the border x =L,
G, (y) along the border x =0,

(10)

It is necessary to define the temperature field of the
plate where F1(X)= F,(x) =1 and G4(y)= G,(y)=0, geome-
try sizes of the plate are : | =1 and L = 2l.

Let's make the comparative analysis of solutions for
the task using numerically -analytical method and the
method of statistical tests. So the rectangular area of the
given size is covered with nodes:

X =X +117, Yy =Yo+ 177, (11)

with

DXl= X, — X
, n=01.
Dyl=Yy,,-Y, 272m , m, =5

y

Conditions of such rating of nodes bring to:
i—i2m, 1 j=L2m, 1
Boundary surface is defined in parameters:
X0 =0, y,=0, X,

m

M =2, y2my =1

where X, Y, and (X , Y ) are coordinates of he
X y X

average surfaces and the central node. Instead of inde-
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pendent values x and y we enter ones normalized by

one":

g = XX o[ q 1],
Xia — X
yoy (12)
g, =Y e[-1 +1]
yj+l - yj
Then equation 9 for nodes
Xig =X =% —Xigy Yiu—Yi=Yi— Y will - occur
invariant to the grid nodes:
2
o T(e:xz, £,) N T (gxz, £,) _o  (13)
Oe, &,

So we can describe algorithm which includes apriority
information. Suppose that the solution of (9) belongs to
the class of analytical functions. We can represent the ex-
isting of the function in the form of Taylor series:

T, W) = 28T, u(ex) (14)
or .
|+¢ X1 (X y) - rl-I-l n+1 (8y) (15)
(n +1)(n + 2) Tj,n+3 (Ex) :_Tj‘.,n+1(gx) (16)
or
(n +1)(n + 2) Ti,n+3 (gx) =_Til,ln+1 (gy) ) (17)

It is easy to see that the Taylors' components (16), (17)
may be expressed via the data of the Cauchy task

{-rj,l(gx)1 Tj,z (gx)}' {-ri,l(gy)’ Ti,2(gy)} and their de-
rivatives by the independent values &£ , g, Then for dif-

ferent values n, e.g. 0, 1, 2, 3 corresponding equations
may be written as following:

T,3(e0) = (5)

TJ,4(5x):'_THj,2(8x)1
(18)
T,s(e0)= +_ (4)(‘9)

T,6(e0) = +aT(4) ()

etc.
So instead of Taylor's series we obtain the local solu-
tion of the Cauch task for the nodes (j = 1,2m, —1) :

n+1
Tyre, (0= 50 [(Zyn), @0+ T o (19)

at the same time the Cauch data {T,, (&,), T, ,(s,)}

represents the unknown functions of &, .

Extending the definition of solution (19) by the bound-
ary conditions of Dirihlet problem and supposing that

&, =1, we receive partitioned solution of the Cauchy
task:

T, w1 1 (2n)
:20( o) @n)! Jl

(ex) =:%h'j+1’1(€x)+-rj —1,1(‘9X)](20)

Or
OO 1
o Gy TE 0 =3l ja0 -Tiaaeo) @)

at j=12m -1, and TO,l(gx)7T2myyl(gx) which are

known boundary functions of the first kind. Differentia-
tion of (19) on &y and parting with Cauch,we get:

2 D" T e =3l 2660+ Ti126e0] @2)
n=

or

5T ) = a0 -Tjaa6n) (23)

h=0 (2n-1)! Tj1

where {T; ,(&,), T2my1(5x)} — are the known bound-

ary conditions of the second kind. So supposing that n
aims to (=M € Z), we receive mathematical models

with the random order of accuracy. If M =1 we obtain
the following finite-difference schemes:

— for the Dirihlet problem:
T, j) =

%[-rl(i =1 ) +4T1(i+ 1)) +T(i i -1 +T10 j+1)] (24)

— for the Neumann's task:
To(i,) = T2 -1 ) ++To G +1 )+ oG i -1 + TG+ (20)

The (24) and (25) may be applied for the statistical
method. Thus the random motion of the particle on the
rectangular grid is easily extended on the Neumann's task
and T, (i, j) at(25) is the gradient function.

It is natural that the random process challenges the use
of a big amount of steps to reach the given point. So it is
useful to consider the special methods of sampling corre-
sponding to groups [2].

To solve the task (9), (10) with the boundary condi-
tions (10) we get the output data:

T[j.0]1=T[}.2m,]=0

T[O,il=T[2m,,i]1=1, (26)

Moving of the M particle is determined in accordance
with the illustration (table. 2) given higher. For organiza-
tion of the casual motions we use the equipartition ran-
dom sequence of numbers neat by means of Personal
Cluster System. The results of calculations given in the
columns at the different values of N- size were processed
as a relative error :

T3, i1-T,Li]
T.[.1]
For T,[j,i] there exists the exact solution based on

the Monte Carlo method. The results of calculations are
shown in a table. 3. From the comparative analysis of re-
sults of modeling it is clear that with the increase of num-
ber of N the relative error diminishes. In the angles clos-
est to knots (1, 1), (mj, 1) an error does not diminish
through the closeness of maximal knots (0, 0) and (mj, 0),
where the function has a break of the first kind.

.100% .  (27)

ALl =
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Table 3.
Relative error for results of solving of tasks by the
Monte Carlo method at the different values of
wandering of a working particle N

_ _ Analytical de-
wandering N =1000 N =10 000 cision
number B, % m, B, % mx Ttey)
(L1 6,332 | 05273 2,359 [0,5076]  0,4959
(2,1) 1,314 | 05938 0614  |05897] 0,5861
(3,1 1,121 | 0,6858 0,236 |0,6798] 0,6782
(4,1) 0,967 | 0,7725 0,209  |0,7667]  0,7651
(5,1) 0913 | 0,8948 0,101  |0,8876] 0,8867
(6,1) 0,967 | 0,7725 0,209  |0,7667]  0,7651
(7.1) 1,121 | 0,6858 0236 |0,6798] 0,6782
(8,1) 1,314 | 0,5938 0,614  |05897] 0,5861
(9,1) 6,332 | 05273 2,359 [0,5076]  0,4959

Conclusions. The article describes the process of

mathematical design of the applied tasks on the basis of
the use of the Personal Cluster System. Experience of ex-
ploitation of the first parallel systems showed that their
effective work needs the radically change of the structure
of numerical methods. In this connection this article
shows the features of design of the applied tasks which
are described on the basis of application of the Personal
Cluster System.

Nowadays it is possible to talk about the revival of the
method of Monte Carlo. It is explained by the fact that
this method ideally approximates the cluster system.
Thus, the more processors will be in a cluster, the more
effective the task will be solved. The method of Monte
Carlo produced and continues to produce substantial in-
fluence on development of methods of calculable mathe-
matics (for example, development of methods of numeri-
cal integration).It also is successfully solving many tasks
combined with other calculable methods and comple-
ments them. The method's application is justified, first of
all, to the decision of such tasks as admit assume of theo-
retical-probable description. It is explained by both : the
tasks with the certain set probability and in tasks with
probabilistic maintenance and substantial simplification
of procedure of decision. The Monte Carlo method is also

used to solve the multidimensional tasks of metallurgy.

Slow convergence of method is its little defect. How-
ever in this article we show that with forming selective
random numbers in relation to separate groups the accura-
cy of this method allows to use it widely.

In addition it was shown that the method of Monte
Carlo is enough successful adjusted to solve multidimen-
sional tasks. For example, at applying the ordinary meth-
od for solving the systems of linear algebraic equaliza-
tions for a calculation of one unknown value it is neces-
sary to define also the other ones. In the Monte Carlo
method it is not necessary because at each time moment
only one necessary co-ordinate is determined.

Regional tasks and tasks with initial conditions for lin-
ear differential equalizations are one of the most interest-
ing application of the method of Monte Carlo. It became
possible only due to the development of the cluster com-
puter systems. In this work the examples of solution for
tasks of Newman and Dirihlet are made by means of the
method of Monte Carlo.

Application of this method enables to see the idea of
disparallel calculations and use the cluster technologies
for calculations. In this article the modified algorithm of
parallel calculations is offered based on the Monte Carlo
method. Here every calculator has its own random gen-
erator of numbers. Thus intermediate calculations come
true independently on the different, separately taken
blades of cluster, "calculators”. The results are already
processed on some separately taken master -blades (
"analyzer"). This allows to get rid from the necessary
presence of router-communicator between the random
generator of numbers and “calculator”. Obviously, that
such decision allows to accelerate the process of calcula-
tions.

It is shown that the parallel algorithms of the Monte
Carlo method are stable to any input data and have the
maximal parallel form and, thus, minimal possible time of
realization using the parallel computing devices. If it is
possible to appoint one processor to one knot of calcula-
tion. Thus the realization of calculations becomes possible
in all knots of net area in parallel and simultaneously.
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Sobol” .M. Metod Monte-Carlo [Monte Carlo Method] / .M. |tsk| of Monte Carlo tasks] / I'.I". Ilsauuu, O.I'. Xonoo //
Sobol’. M.: Nauka, 1968. — 64 s. Pytannja prykladnoy —matematyky | matematychnogo
9.IlIBaumuy I'.I. Jleski acmeKTH KIACTEPHUX TEXHOJOTIH modeljuvannja: zb. nauk. pr. — D., 2011. — S. 300 — 322.
MojemoBanHs 3amad Monte-Kapno / [.I'. [Ieauwy, O.I'. 10. llneitnep I1. MrxeHepHBbIE MPOOIEMBI TEILIONPOBOIHOCTH /
Xonox // TluramHs  mpUKIagHOI — MaTeMaTHKH i I1. HInelinep; nep. ¢ anra. — M.: U3n-so un. mur., 1960. —
MaTeMaTUYHOro MOJENoBaHHs: 30. HayK. np. — /1., 2011. — C. 478 c.
300 - 322. Shneyder  P.  Ingenernye  problemy teploprovodnodti
Shvachych G.G. Dejaki aspekty klasternyh tehnologiy [Engineerings problems of heat conductivity] / P. Shneyder;
modeljuvannja zadach Monte Carlo [Some|certain| aspects of per. S angl. — M.: Izd-vo in. lit., 1960. — 478 s.

IBayny I'.I'. MHoronpouneccopHbie MOAEJIMPYIOLIHE CPEAbI B 321a4e CTOXaCTUYECKOI0 MOACTUPOBAHUS
AnHoTamus. B pabote paccMaTpuBaloTCcs MHOTOIPOLIECOPHBIE TEXHOJIOTHH MoaenupoBaHus 3anad Monte — Kapio. [Tokasano, uro
TOJIbKO IIPUMEHEHUE COBPEMEHHBIX CYNEPIPOU3BOJUTEIIBHBIX CUCTEM MO3BOIMIO IT0-HOBOMY PEaan30BaTh MEXAHU3M COOTBETCTBY-
IOIIUX PaclpeieleHHbIX BhIYUCIEHHH. [IpUBOIATCS COOTBETCTBYIOMINE CXEMBI BBIUHCIEHUH, KOTOpBIE 00ECIEUNBAIOT YBEIHUCHNE
MPOU3BOJIUTEIFHOCTH M ObICTpOJCHCTBHE BhIYUCICHUH. DPPEKTHBHOCTD NPEIIOKEHHOTO MOJX0/1a WLTIOCTPUPYETCSI CPAaBHUTEIb-
HBIM PEIICHUEM Psiia HECTALIMOHAPHBIX 3a/au.

Kniouesvle cnosa: mnozonpoyecopuvie mexnono2uu, mooenuposanus saoay Monme — Kapno, pacnpedenennbvie 8b14ucieHus.
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