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Introduction. Among the variety of calculating methods 

in the modern mathematical solutions it is possible to put 

attention on the methods such as Monte Carlo [5, 6]. This 

name unites the group of the calculative methods based 

on receiving the great amount of the stochastic process 

realizations. This process demands that its probability 

could correlate with the analogical values of the solved 

problem. Monte Carlo methods are widely used in areas 

of physics, mathematics,economics, optimization, man-

agement etc. The national works based on the Monte Car-

lo methods appeared in 1955–1956. Since that time a lot 

of the scientific works describing the above mentioned 

method were written [1–4, 7, 8]. Even the superficial 

glance shows the efficiency of the Monte Carlo method 

for solving of applied tasks in the different science and 

techniques areas. Thus now these methods are applied for 

solving for some classes of the differential equations in 

the partial derivatives, integral equations, problems of the 

eigen-values and linear algebraic equations. The im-

portant feature of the Monte Carlo method is its experi-

mental characteristics. We will call this name the proce-

dure including the use of ways of statistic sampling for 

the approximate solving of the mathematical and physics 

problems. 

Among all methods the Monte Carlo had and has the 

influence on the development of the methods of applied 

mathematics, e.g. on the development of the methods of 

numerical integrating. It also effectively coincides with 

other calculative methods and makes addition for them. It 

is widely used especially for the tasks having the theoreti-

cal-probable description because of the definite simplifi-

cation of the solving. 

Monte Carlo method is widely used for its simplicity 

and universality. Low approximation is the essential 

shortcoming of the method but in this work we will de-

scribe its modifications which provide the high order of 

the convergence; which is possible with the help of spe-

cial assumptions. Though the calculating procedure be-

comes more complicated. Monte Carlo approximation is 

the approximation based on probability. It is known that 

the approximate methods are often used for solving the 

practical tasks. 

At least we admit that solution accuracy of this method 

depends on the quality of the generator of the random 

values that describes the analyzed process and also on the 

productivity of the so called calculator. Today the tact 

frequency of the modern processors is higher than Giga-

bytes and the volume of the RAM of the PC is also very 

large. Taking in account that the definite class of tasks 

will be developed on the personal calculating cluster the 

calculator productivity is not a problem for solving for 

calculating algorithms used to solve multi dimensional 

tasks. The practical example of the mechanism for apply-

ing this method and some special features of its realizing 

will be considered for the typical thermo – physical tasks. 

Specialty of realization of the parallel calculations 

with the Monte Carlo Method. Among the other numer-

ical methods the main role plays the Monte Carlo Method. 

We have to point that this method helps to get the closest 

solution of the task in one fixed point without knowing 

the solution for other points of the grid. This differs the 

Monte Carlo Method especially for solving the Dirichlet 

problem from other well-known ways. The simplified 

scheme is shown on the Fig.1. 
 

 
Fig.1. Scheme of calculations with the Monte Carlo Method 

 

Application of this method gives the possibility to re-

view the idea of making nonparallel calculations and us-

ing the cluster technologies. Intermediate results may be 

obtained independently on the different levels and the fi-

nal results should be arranged on any separate master - 

blade or analyzer. Fig.2 shows the algorithm of parallel 

calculations. 
 

 
Fig.2. Scheme of parallel calculations 

 

According to this scheme one generator of the random 

numbers outputs one random value to each "calculator". 

Information is permanently transferred via latent chan-

nels. So the productivity will be low as well as the data 

speed. Experience of operating of the calculating cluster 

for such schemes made it available to perfect the scheme 

on the Fig. 2. 

The Fig.3 shows the modified algorithm of calculations 
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with Monte Carlo Method. Every user has its own genera-

tor of random values. This fact allows to escape the pres-

ence of the router communicator. This decision definitely 

accelerates the calculating process. The productivity may 

be evaluated experimentally. 
 

 
Fig.3. Modified algorithm of parallel calculations based on 

Monte Carlo Method 
 

Thus Monte Carlo Method based algorithms are the 

stable relating to any input data, have the maximal paral-

lel form and the minimal time for realization of calcula-

tions. 

Investigation of efficiency of the cluster system 

simulation of tasks by the Monte Carlo Method 

Analysis of the problem of search and solution for 

boundary value problems. Boundary problems and prob-

lems with initial conditions for linear differential equa-

tions are the one of the most interesting areas of using the 

Monte Carlo Method.The connection between two types 

of these problems is known for long time [2 – 4, 7 – 9]. 

But only the computers' appearance gave the possibility 

of using this connection for finding the results of this 

problem.  

To clear the main idea of the method we consider the 

Dirichlet problem for Laplace equation.We have the defi-

nite G-area on which boundary the function f(Q) is de-

fined. We have to find the function U(P) that satisfies the 

Laplace equation: 

                                  ∆U = 0,    (1) 

on boundary of area P accepts values: 

                             
)(QfU

Г
 .   (2) 

Generally this problem is brought to a finite-difference 

scheme. G-area is covered by the square grid nodes. We 

look for values of the function U(Р) from the following 

system. 

)]()()()([
4

1
)( 4321 PUPUPUPUPU  . (3) 

Symbols {P1, P2, P3, P4} mean four nodes next to the 

internal node P: they are arranged inside the G-area or on 

its bound. 

We consider the theoretical probable scheme which is 

connected with the problem. Imagine the participle that 

has to move between the grid nodes with integer coordi-

nates (i, j) on the area: 

),,2,1,0,(

, 00





ji

jyyixx ji 
, 

and the step is .-,  - 11 jjjiii yyyxxx    

Let's say that the grid of Sη consists of internal and 

boundary nodes in which boundary conditions of the first 

kind are set. Boundary nodes represent a set of the linear 

points of Mpq(xp,yq) which approximate the curvilinear Г 

boundary of the area G which approximate the curvilinear 

boundary of the area G to with accuracy η.The particle M 

realizes the uniform accidental movement between nodes 

of the grid. In particular, being in the internal node Mi0,j0 

of a grid Sη, this particle for one transition with identical 

probability equal to ¼ can move to one of adjacent nodes. 

In particular in Mi-1,j(xi-η,yj), one step back, in Mi+1,j(xi+η, 

yj) one step to the right, in Mi,j-1(xi, yj - η) -one a step down 

or Mi,j+1(xi, yj +η) - one step up. Each such transition is ab-

solutely accidental and doesn't depend on the position of a 

particle and its previous relocation. Let's allow that relo-

cation of М will end as soon as it reaches the boundary Гη. 

In this case Гη is "the absorbing screen". It is possible to 

prove [4] that М relocation through a finite number of 

steps will finish on this boundary. 

If the particle of М began the relocation with the fixed 

point of Mi0,j0 on  the grid Sη that can be written as: 

Mi0,j0, Mi1,j1, …, MiS,jS, 

аnd  

)1 - S,,1,0(  kГM
kk ji  . 

Here expression ГM
kk ji ∈  displays a particle path 

in case of quantity of steps equal to S. This value is ac-

cepted to be called "history of relocation". 

Uniform accidental relocation of a particle can be or-

ganized by means of uniformly distributed sequence of 

random numbers [1 – 4, 7] which are equal to: 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9. 

For this purpose it is enough to carry out random check 

from numbers (0 – 9), adhering to the instruction shown 

in the table 1. 

Table 1. 

Determination of the particle step depending on a 

random number 
Random number Determination 

0 or 4 ∆хi = η (step right) 

1 or 5 ∆YY = η (step up) 

2 or 6 ∆∆хi = – η (step left) 

3 or 7 ∆∆YY = – η (step down) 

 

Random numbers are taken from the ready tables or 

turn out by the pseudorandom number generator [2]. The 

last method became popular as it doesn't allow to over-

load the system memory. The particle which has begun 

relocation from a point Mi0,j0 after the first step will occur 

in one of the nodes  

I. Mi,j, Mi-1,j, …, ; 

II. Mi,j, Mi+1,j, …, ; 

III Mi,j, Mi,j-1, …, ; 

IV. Mi,j, Mi,j+1, …. 

).,,1,(
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Having multiplied two members of equation (4) on 

boundary values γpq and having summarized all possible p 

and q values, we will receive. 

        

)(
4

1
1,1-,1,1,-   jijijijiij  .  (5) 

Values ij allow the experimental determination, for 

this purpose it is necessary to replace mathematical ex-

pectation by empirical. Then expression will look as: 

              




w

k

k
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k
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 .   (6) 

The formula (6) gives a statistical assessment of values 

U i, j and can be used as the best approximation to the so-

lution of the Dirichlet problem. 

Example 1. To find value U(2, 2) with the application 

of the Monte Carlo method where 

,0),(  yxU  in the area 

G {0 ≤ x ≤ 4; 0 ≤ y ≤ 4}, (7) 

and conditions are: 

.40,0),0(

;40,)4,(

;40,),4(

;40,0)0,(









yyU

xxxU

yyyU

xxU

 (8) 

Table 2. 

Trajectory of the motion for the working point 

Number of 
motion, k 

Trajectory of wandering 

Value of the function 

u(x,y) at exit point on 

the border G 

1 

(2,2) > (2,3) > (2,2) > (2,1) > 
> (3,1) > (3,2) > (3,1) > (3,2) > 

> (2,2) > (2,3) > (2,3) > (2,2) > 

> (2,1) > (2,0); 

0 

2 
(2,2) > (2,3) > (3,3) > (3,2) > 

> (4,2); 
2 

3 
(2,2) > (2,3) > (2,2) > (2,3) > 

> (2,4); 
2 

4 (2,2) > (1,2) > (1,2) > (0,2); 0 

5 (2,2) > (2,3) > (2,4); 2 

6 (2,2) > (2,1) > (2,0); 0 

7 

(2,2) > (1,2) > (2,2) > (3,2) > 

> (3,1) > (3,2) > (2,2) > (1,2) > 
> (0,2); 

0 

8 (2,2) > (1,2) > (0,2); 0 

9 

(2,2) > (2,1) > (2,2) > (3,2) > 

> (3,3) > (3,3) > (2,3) > (1,3) > 
> (0,3); 

0 

10 (2,2) > (1,2) > (0,2); 0 

11 
(2,2) > (2,2) > (2,2) > (2,1) > 

> (2,2) > (3,2) > (3,1) > (3,1) > 

> (4,1); 

1 

12 
(2,2) > (2,2) > (2,1) > (2,1) > 

> (4,1); 
0 

13 (2,2) > (2,1) > (3,1) > (3,0) ; 0 

14 (2,2) > (3,2) > (4,2); 2 

15 (2,2) > (2,3) > (2,4); 2 

16 
(2,2) > (2,3) > (2,3) > (1,3) > 

> (0,3); 
0 

17 (2,2) > (3,2) > (4,2); 2 

18 
(2,2) > (3,2) > (3,1) > (2,1) > 

> (2,2) > (3,2) > (4,2); 
3 

19 (2,2) > (3,2) > (4,2); 2 

20 
(2,2) > (2,3) > (2,3) > (2,3) > 

> (2,4); 
2 

 ∑  20 

Solution. For the square G with the boundary Г we 

will build the square grid S with the step η =1. Coming 

from the initial position (2,2) the movement finishes on 

the boundary Г in the area Gк, at the given conditions (8) 

(see table 1). Appearance of numbers 8 and 9 we consider 

as a stop on one place. 

Table 2 shows trajectories of 20 histories for two-

dimension random movement at N = 20. 

Due to (8) we get that: 

120
20

1
(

20

1
)2,2( ∑ )()( 

k

k

q

k

p yxU  . 

In this case the exact solution of the Dirihlet problem is 

known (7, 8): 

4
),(

xy
yxU  . 

Thus 

1
4

22
)2,2( 


U . 

This is a way we received the exact solution for U(2,2) 

applying the statistic method.  

 

Example 2. Let us consider the task of the temperature 

field for the coal adiabatic [10]. This field Т(x,y) has to 

match the equations 

                             

0
∂
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,   (9) 

 

and also the system of randomly selected boundary 

values of temperature: 


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It is necessary to define the temperature field of the 

plate where F1(x)= F2(x) =1 and G1(y)= G2(y)=0, geome-

try sizes of the plate are : l =1 and L = 2l. 

Let's make the comparative analysis of solutions for 

the task using numerically -analytical method and the 

method of statistical tests. So the rectangular area of the 

given size is covered with nodes: 

              
 jyyixx ji  00 , ,  (11) 
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Conditions of such rating of nodes bring to: 

.12,1,1  2,1  yx mjmi  

Boundary surface is defined in parameters:  

1,2,0,0 2200 
yx mm yxyx , 

where 
xmx

ymy  and ),(
yx mm yx  are coordinates of he 

average surfaces and the central node. Instead of inde-
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pendent values x and y we enter ones normalized by 

"one": 

                        

 

 .1,1∈
y  

y

,1,1 ∈
 x 
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  (12) 

Then equation (9) for nodes 

1-jj11-ii1 yy, x  x   jjii yyxx
 

will occur 

invariant to the grid nodes:  
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So we can describe algorithm which includes apriority 

information. Suppose that the solution of (9) belongs to 

the class of analytical functions. We can represent the ex-

isting of the function in the form of Taylor series: 
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1,3, xnjxnj TTnn      (16) 

or 

         
)()()2)(1( "

1,3, ynixni TTnn    .  (17) 

It is easy to see that the Taylors' components (16), (17) 

may be expressed via the data of the Cauchy task 

 )(),( 2,1, xjxj TT  ,  )(),( 2,1, yiyi TT   and their de-

rivatives by the independent values 
x , 

y . Then for dif-

ferent values n, e.g. 0, 1, 2, 3 corresponding equations 

may be written as following: 
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etc. 

So instead of Taylor's series we obtain the local solu-

tion of the Cauch task for the nodes )1  2,1(  ymj : 
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at the same time the Cauch data )}(),({ 2,1, xJxJ TT   

represents the unknown functions of x . 

Extending the definition of solution (19) by the bound-

ary conditions of Dirihlet problem and supposing that 

1x , we receive partitioned solution of the Cauchy 

task: 
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Or 
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at 1-2,1 ymj  , and )(),(
1,21,0 xmx y

TT   which are 

known boundary functions of the first kind. Differentia-

tion of (19) on y  and parting with Cauch,we get: 

 )(2,)(2,1
2

1∞

0
)(

)2(
1,)!2(

1
)1(∑ x1-jTxjT

n
x

n
j

T
n

n  


  (22) 

or 
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where )}(),({
1,22,0 xmx y

TT   – are the known bound-

ary conditions of the second kind. So supposing that n 

aims to ( ZMn  ), we receive mathematical models 

with the random order of accuracy. If 1M  we obtain 

the following finite-difference schemes: 

– for the Dirihlet problem: 

)],(1),(1),(1),(1[
4

1
),(1 1jiT1jiTj1iTj1iTjiT 

 
(24) 

– for the Neumann's task: 

)],(2),(2),(2),(2[
4

1
),(2 1jiT1jiTj1iTj1iTjiT 

. (25) 

The (24) and (25) may be applied for the statistical 

method. Thus the random motion of the particle on the 

rectangular grid is easily extended on the Neumann's task 

and ),(2 jiT  at (25) is the gradient function.  

It is natural that the random process challenges the use 

of a big amount of steps to reach the given point. So it is 

useful to consider the special methods of sampling corre-

sponding to groups [2]. 

To solve the task (9), (10) with the boundary condi-

tions (10) we get the output data: 

                           ,1],2[],0[

,0]2,[]0,[
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imTiT

mjTjT

x

x

  (26) 

Moving of the M particle is determined in accordance 

with the illustration (table. 2) given higher. For organiza-

tion of the casual motions we use the equipartition ran-

dom sequence of numbers neat by means of Personal 

Cluster System. The results of calculations given in the 

columns at the different values of N- size were processed 

as a relative error : 

                

%100
],[

],[-],[
],[ 

ijT

ijTijT
ij

t

pt
 .  (27) 

For ],[ ijTt
 there exists the exact solution based on 

the Monte Carlo method. The results of calculations are 

shown in a table. 3. From the comparative analysis of re-

sults of modeling it is clear that with the increase of num-

ber of N the relative error diminishes. In the angles clos-

est to knots (1, 1), (mj, 1) an error does not diminish 

through the closeness of maximal knots (0, 0) and (mj, 0), 

where the function has a break of the first kind. 
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Table 3. 

Relative error for results of solving of tasks by the 

Monte Carlo method at the different values of  

wandering of a working particle N 

wandering 

number 

N = 1 000 N = 10 000 
Analytical de-

cision 

%,  
xm  %,  

xm  Т(x,y) 

(1,1) 6,332 0,5273 2,359 0,5076 0,4959 

(2,1) 1,314 0,5938 0,614 0,5897 0,5861 

(3,1) 1,121 0,6858 0,236 0,6798 0,6782 

(4,1) 0,967 0,7725 0,209 0,7667 0,7651 

(5,1) 0,913 0,8948 0,101 0,8876 0,8867 

(6,1) 0,967 0,7725 0,209 0,7667 0,7651 

(7,1) 1,121 0,6858 0,236 0,6798 0,6782 

(8,1) 1,314 0,5938 0,614 0,5897 0,5861 

(9,1) 6,332 0,5273 2,359 0,5076 0,4959 

 

Conclusions. The article describes the process of 

mathematical design of the applied tasks on the basis of 

the use of the Personal Cluster System. Experience of ex-

ploitation of the first parallel systems showed that their 

effective work needs the radically change of the structure 

of numerical methods. In this connection this article 

shows the features of design of the applied tasks which 

are described on the basis of application of the Personal 

Cluster System. 

Nowadays it is possible to talk about the revival of the 

method of Monte Carlo. It is explained by the fact that 

this method ideally approximates the cluster system. 

Thus, the more processors will be in a cluster, the more 

effective the task will be solved. The method of Monte 

Carlo produced and continues to produce substantial in-

fluence on development of methods of calculable mathe-

matics (for example, development of methods of numeri-

cal integration).It also is successfully solving many tasks 

combined with other calculable methods and comple-

ments them. The method's application is justified, first of 

all, to the decision of such tasks as admit assume of theo-

retical-probable description. It is explained by both : the 

tasks with the certain set probability and in tasks with 

probabilistic maintenance and substantial simplification 

of procedure of decision. The Monte Carlo method is also 

used to solve the multidimensional tasks of metallurgy.  

Slow convergence of method is its little defect. How-

ever in this article we show that with forming selective 

random numbers in relation to separate groups the accura-

cy of this method allows to use it widely. 

In addition it was shown that the method of Monte 

Carlo is enough successful adjusted to solve multidimen-

sional tasks. For example, at applying the ordinary meth-

od for solving the systems of linear algebraic equaliza-

tions for a calculation of one unknown value it is neces-

sary to define also the other ones. In the Monte Carlo 

method it is not necessary because at each time moment 

only one necessary co-ordinate is determined. 

Regional tasks and tasks with initial conditions for lin-

ear differential equalizations are one of the most interest-

ing application of the method of Monte Carlo. It became 

possible only due to the development of the cluster com-

puter systems. In this work the examples of solution for 

tasks of Newman and Dirihlet are made by means of the 

method of Monte Carlo. 

Application of this method enables to see the idea of 

disparallel calculations and use the cluster technologies 

for calculations. In this article the modified algorithm of 

parallel calculations is offered based on the Monte Carlo 

method. Here every calculator has its own random gen-

erator of numbers. Thus intermediate calculations come 

true independently on the different, separately taken 

blades of cluster, "calculators". The results are already 

processed on some separately taken master -blades ( 

"analyzer"). This allows to get rid from the necessary 

presence of router-communicator between the random 

generator of numbers and "calculator". Obviously, that 

such decision allows to accelerate the process of calcula-

tions. 

It is shown that the parallel algorithms of the Monte 

Carlo method are stable to any input data and have the 

maximal parallel form and, thus, minimal possible time of 

realization using the parallel computing devices. If it is 

possible to appoint one processor to one knot of calcula-

tion. Thus the realization of calculations becomes possible 

in all knots of net area in parallel and simultaneously. 
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Швачич Г.Г. Многопроцессорные моделирующие среды в задаче стохастического моделирования 

Аннотация. В работе рассматриваются многопроцесорные технологии моделирования задач Монте – Карло. Показано, что 

только применение современных суперпроизводительных систем позволило по-новому реализовать механизм соответству-

ющих распределенных вычислений. Приводятся соответствующие схемы вычислений, которые обеспечивают увеличение 

производительности и быстродействие вычислений. Эффективность предложенного подхода иллюстрируется сравнитель-

ным решением ряда нестационарных задач.  

Ключевые слова: многопроцесорные технологии, моделирования задач Монте – Карло, распределенные вычисления. 
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