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Creation of parallel computing systems required the
development of mathematical concepts for con-
structing parallel algorithms, i.e. algorithms adapted
for implementation in these systems. As the basis
for constructing the parallel algorithm we can take
both: a sequential algorithm and the task itself as
well [2, 3]. The most sensible at parallelization of
sequential algorithm is pragmatic approach; actually
sequential algorithms detect common elements
which further are transformed to a parallel form.

The numerical and analytical schemes consider
the example of the boundary value problem for the
heat equation with constant coefficients. E.g. we

want to find a solution in the area
{0<x<x_, 0<t<T}[4]:
oY %Y
ol 1)
which satisfies the initial condition
Y (x,0) = ¢(X) 2
and the boundary conditions
Y (0, 1) =14(t), Y, )=p () (3)

Here 14, (t), # (t), @(X) —are given functions.

It is known that under certain assumptions of the
smoothness problem (1) - (3) has a unique solution

[4].
We propose to apply the net on value x with the
step between nodes equal to.

X J—
D)dpzﬁ, p=12m-1, meZ, (4)

where m -is the integer parameter sampling. For
uniformly distributed nodes

Dxl=x, — X, ; =const,
X,=X,4+P-Dx, p=12m-1

On the basis of prior information required func-
tion is represented as a Taylor series:

Yp+gx,1(t’ X) = 28: .Yp,n+1(t)!

n=0

()

(6)

with
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After agreement (6) with equation (1) and equat-
ing the coefficients of equal powers we receive
&, ,the system of ordinary differential equations
(SODE)

H(n+2)

, (n+
Y t)= Y t
p,n+1( ) DX12 p,n+3( ) (7)
having the form of Cauchy
Yp,n+1 (O) :¢p,n+11 (8)

Where ¢, ., — are the known values of the Taylor

component of the initial function (2).
Let restrict a finite number of terms n=N series

in the right side of the Taylor series (6), so we ob-
tain

N
Yp+gx,1(x’t) = Zg: 'Yp,n+1(t)1 9)
n=0

Where N —is the integer number .To approximate
equation (1) in the point (x,,t) we will consider the

closing connection

{Yp,NH}
Yon

We suppose that in (9) &, =%1 and thus we ob-

tain on the three-point template the system of two
algebraic equations

N-2
Yp,N+1 +Yp,N :|:Yp+1,1 - sz,ml}
n=0

N-2

S 0

n=0

(10)

(11)
Yp,N—l _Yp,N—l :(_ 1)N '|:Yp—1,l -

We find
Yp,N+1 _1
Yon
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Where
or=1+(-1)"", N=2,3,4,... (13)
are normalizing facﬂrs.
For N=2 1=0.0 ye have
-2 [Yp+11 Vo1 ]
(14)
Y {[lel p—l,l ]_2 'Yp,l}'

After substltutlng (14) into (7) we obtain the SODE
, 1
Yp,l(t)z_D)dz { [Yp+l,l(t)+Yp71,l(t)] _2Yp,l(t)}’ (15)

p=12m-—
Where {YO,l(t)’YZm,l(t)} are the boundary func-

tions of the first kind
For N = 3 and the significance of the relations (7)
and (14) we obtain the higher-order SODE

Vu0)=5 D M@0, )
Va0 == My a0+, 1 (0)-2Y,.2(0))
where

O,Z(T):DX]-' gW(T)’

Y,
{YZm,Z(T):DX]"gL(T)’ (17)

are known boundary functions of the second kind.

Note that the developed approach includes con-
ventional finite-difference methods in a special case.
Scheme (15) coincides with the classical Dirichlet
problem, and the circuit (16) with the Neumann
problem. The problem (16) is characterized by the
fact that the transmission of information on the
boundaries of the area in the natural scheme is im-
plemented through internal point accurately without
reducing the order of approximation.

With the increase of N - order reducing the ap-
proximation orders of closing bonds (12) also in-
creases. Note that the integration of SODE (15) -
(17) having the Cauchy form with explicit methods
is the most advanced procedure. The variety of
standard programs allows us to consider this process
as an elementary. From the point of view of cost ef-
fectiveness depending on operations' number for the
mentioned above methods cannot be improved.

The developed numerical and analytical proce-
dure for discretization can be simply generalized to
other types of differential equations of mathematical
physics. In particular, in the stationary problems it is
easier to localize features in the regions of smooth-
ness using schemes of high order accuracy.

The value of the order of approximation in con-
junction with carrying out the calculation on the
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shredder grids allows to focus in assessing the cal-
culation accuracy.

We will show how to formulate the algorithm of
approximate calculations based on the operations
with functions as well as with formulas.

In the construction of a computational algorithm
(13) - (17) we used a priori information available to
the task, and first of all information about belonging
to a particular class of functions' smoothness which
describe the task. Smoothness is determining feature
of the diameters' size .The values of the diameters
give an idea of the best possible accuracy for the
computational algorithm [1].

Let us introduce Cauchy data as dependent vari-
ables

I¥,,0. Y, } p=12m-1
Rewriting SODE (4) as follows

D)d2n ,
Yp,n+3 (t) _mYp,ml(t)'

From (18), (19) we receive
Dxl2
p, S(t)

(18)

(19)

YA (),

p4(t)— Y“) (D),

Dxl“ (20)

Yos()=—"=Y2 (1),

Dxl6

Y, s(t)= Y(” (@),

Thus, the general solution of (6) can be repre-
sented as follows

00

2n
YPH ,1(th) = ZSXZn . Dxt RVAQ) oa(t) +
” n=0 (2 )I
- (21)
o0 D n+.
3t DX Y 0a0)

rd @2n+1)!

The first term of (21) satisfies the adiabatic wall,
and the second one satisfies the conditions of the
wall at a constant temperature.

In the algebraic area the mathematical model in
the form of Cauchy data duplexing

iY(n)p,l(t)‘ Dxa™ :%[Ypﬂyl(t)*'Yp_n(t)]' (22)

(2n)!
iY(n)Pvz(t)' D™ :%[Ypﬂ,z(t) +Yp—1,2(t)] (23)

(2n+1)!

In general we have the rapid convergence of in-
finite series (22), (23) at physically realizable of the
variables. For example, if the derivatives of

Y,1(D), Y, ,(t) are limited by derivatives of the

exponential functions, this is a confirming of term
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by term differentiation which is used in the analysis.
However, in practical cases, the series must con-
verge quickly enough to be able to confine to a few
initial terms of the series.

Example. Let us consider a solid plate with a
stepped increase in the surface temperature:

Y0,4 (t) =1, Y2m,1(t) =1, Xom = 2,
Y,,,(t) —average surface
g e[-1, +1]

(24)

Taking in account that 5X|X:O and the symmetry
of the problem at coordinate, we have
Y,.=0, Dx1=1. To define Y, , we use outer
boundary conditions on the surface &, =%1. From

the infinite sum in (21) we leave only two first terms
atn =1 and n = 2 of the series. So we get the math-

N =1,
Yoi(t)=1-e"%;

N=2,

Y, (t)=1-137e % 1137,
N =00,

(26)

2
—(2n-12 7t
(2n-1) 2

4 (Y
mel(t)_1+;§ (2n—1)e
When passing to the limit at N —oo0 approxi-

mate solution matches to the exact one. When
N =2 the computing error does not exceed 3 %.
Thus, with increasing parameter N the error de-
creases rapidly (see Table 1).
Table 1.
Temperature rise on the inner surface of the plate
on the outer surface

ematical model t N=1 N=2 |The exact solution
1 0 0 0 0
N =3 Yoa (0 +5 YnaO=1, (25) 005 | 0095 0.026 0.03
1 1 0.10 0.181 0.082 0.081
N =2, Ym,l(t)+§Yn;'1(t)+ZYn;'vl(t)=l. 0.20 0.330 0.238 0.230
0.40 0.551 0.499 0.528
From which we receive the result: 0.65 0.698 0.413 0.711
0.80 0.798 0.819 0.827
1.00 0.864 0.892 0.892
As the aim was to synthesize parallel algorithms
of the method with the help of ratio (26) we ob-
tained that the method fits into the concept of unlim-
ited parallelism [2]. Indeed, one processor can be
assigned to one node of the design, and it becomes
possible to perform calculations on all nodes simul-
taneously.
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Mopean napajajaejJbHbIX BBIYHMCJIEHHI HAa OCHOBE KOHCTPYMPOBAHUSA YUCJTCHHO-AHAIUTUYECCKHUX CXEM
AHHOTalIl/Iﬂ: Pa6ora TMOCBAIICHA MOCTPOCHUIO YUCIICHHO-aHAJIUTUICCKUM METOJJOM KOHCTPYUPOBAHUSA 3(13(1)CKTI/IBHI)IX
AJITOPUTMOB JId PCHICHUA 3a4a4 napa60nnquK0ro THIIA. I/ICHOHL3y5{ aIpUoOpPHYIO I/IH(l)OpMaIII/IIO 0 TJIAAKOCTH pelie-
HUA, 00JIBIIIOE BHUMAHHE YACTIACTCA MOCTPOCHUIO peH.IeHI/Iﬁ BBICOKOI'O MMOpsi/IKa TOYHOCTH.

KiroueBble ¢JI0BAa: YNCIICHHO-aHAINTHYECKHIE MCTOAbI, 3a1a4 r{apa6onnqecxor0 TUIIA, BBICOKOT'O MOPpsJiKa TOYHO-

CTH.
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