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Abstract: The aim of this work is to construct a numerical-analytical method of designing efficient algorithms for solu-

tion of tasks having the parabolic type. Using a priori information about the smoothness of solutions, great attention is 

paid to the construction of solutions of high -order accuracy. 
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Creation of parallel computing systems required the 

development of mathematical concepts for con-

structing parallel algorithms, i.e. algorithms adapted 

for implementation in these systems. As the basis 

for constructing the parallel algorithm we can take 

both: a sequential algorithm and the task itself as 

well [2, 3]. The most sensible at parallelization of 

sequential algorithm is pragmatic approach; actually 

sequential algorithms detect common elements 

which further are transformed to a parallel form. 

The numerical and analytical schemes consider 

the example of the boundary value problem for the 

heat equation with constant coefficients. E.g.  we 

want to find a solution in the area 

 Ttxx L  0,0  [4]: 
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which satisfies the initial condition  
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and the boundary conditions 
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Here )(),(),(0 xtt L   – are given functions. 

It is known that under certain assumptions of the 

smoothness problem (1) - (3) has a unique solution 

[4]. 

We propose to apply the net on value x with the 

step between nodes equal to. 
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where m - is the integer parameter sampling. For 

uniformly distributed nodes 
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On the basis of prior information required func-

tion is represented as a Taylor series: 
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After agreement (6) with equation (1) and equat-

ing the coefficients of equal powers we receive 
n

x , the system of ordinary differential equations 

(SODE) 
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having the form of Cauchy 
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Where 1,np  are the known values of the Taylor 

component of the initial function (2). 

Let restrict a finite number of terms Nn  series 

in the right side of the Taylor series (6), so we ob-

tain 
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Where N – is the integer number .To approximate 

equation (1) in the point ( txp , ) we will consider the 

closing connection 
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We suppose that in (9) 1x  and thus we ob-

tain on the three-point template the system of two 

algebraic equations 
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We find 
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Where  

         
  Nn

n

  11 ,  N = 2, 3, 4, …      (13) 

are normalizing factors. 

For N = 2 0,0n  we have 
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After substituting (14) into (7) we obtain the SODE 
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Where  )(),( 1,21,0 tYtY m
 are the boundary func-

tions of the first kind 

For N = 3 and the significance of the relations (7) 

and (14) we obtain the higher-order SODE 
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where 
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are known boundary functions of the second kind. 

Note that the developed approach includes con-

ventional finite-difference methods in a special case. 

Scheme (15) coincides with the classical Dirichlet 

problem, and the circuit (16) with the Neumann 

problem. The problem (16) is characterized by the 

fact that the transmission of information on the 

boundaries of the area in the natural scheme is im-

plemented through internal point accurately without 

reducing the order of approximation. 

With the increase of N - order reducing the ap-

proximation orders of closing bonds (12) also in-

creases. Note that the integration of SODE (15) - 

(17) having the Cauchy form with explicit methods 

is the most advanced procedure. The variety of 

standard programs allows us to consider this process 

as an elementary. From the point of view of cost ef-

fectiveness depending on operations' number for the 

mentioned above methods cannot be improved. 

The developed numerical and analytical proce-

dure for discretization can be simply generalized to 

other types of differential equations of mathematical 

physics. In particular, in the stationary problems it is 

easier to localize features in the regions of smooth-

ness using schemes of high order accuracy. 

The value of the order of approximation in con-

junction with carrying out the calculation on the 

shredder grids allows to focus in assessing the cal-

culation  accuracy. 

We will show how to formulate the algorithm of 

approximate calculations based on the operations 

with  functions as well as with formulas. 

In the construction of a computational algorithm 

(13) - (17) we used a priori information available to 

the task, and first of all information about belonging 

to a particular class of functions' smoothness which 

describe the task. Smoothness is determining feature 

of the diameters' size .The values of the diameters 

give an idea of the best possible accuracy for the 

computational algorithm [1]. 

Let us introduce Cauchy data as dependent vari-

ables 
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Rewriting SODE (4) as follows 
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From (18), (19) we receive 
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Thus, the general solution of (6) can be repre-

sented as follows 
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The first term of (21) satisfies the adiabatic wall, 

and the second one satisfies the conditions of the 

wall at a constant temperature. 

In the algebraic area the mathematical model in 

the form of Cauchy data duplexing 
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In general we have the rapid convergence of in-

finite series (22), (23) at physically realizable of the 

variables. For example, if the derivatives of 

)(),( 2,1, tYtY pp
 are limited by derivatives of the 

exponential functions, this is a confirming of term 
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by term differentiation which is used in the analysis. 

However, in practical cases, the series must con-

verge quickly enough to be able to confine to a few 

initial terms of the series. 

Example. Let us consider a solid plate with a 

stepped increase in the surface temperature: 
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Taking in account that 
0xx  and the symmetry 

of the problem at coordinate, we have 

.11,02,  DxYm
 To define 

1,mY  we use outer 

boundary conditions on the surface 1x . From 

the infinite sum in (21) we leave only two first terms 

at n = 1 and n = 2 of the series. So we get the math-

ematical model 
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From which we receive the result: 
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When passing to the limit at N  approxi-

mate solution matches to the exact one. When 

2N  the computing error does not exceed 3 %. 

Thus, with increasing parameter N the error de-

creases rapidly (see Table 1). 
Table 1. 

Temperature rise on the inner surface of the plate 

on the outer surface 
t N=1 N=2 The exact solution 

0 0 0 0 

0.05 0.095 0.026 0.03 

0.10 0.181 0.082 0.081 

0.20 0.330 0.238 0.230 

0.40 0.551 0.499 0.528 

0.65 0.698 0.413 0.711 

0.80 0.798 0.819 0.827 

1.00 0.864 0.892 0.892 

As the aim was to synthesize parallel algorithms 

of the method with the help of ratio (26) we ob-

tained that the method fits into the concept of unlim-

ited parallelism [2]. Indeed, one processor can be 

assigned to one node of the design, and it becomes 

possible to perform calculations on all nodes simul-

taneously. 
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