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Abstract. It has been described a method for finding the brachistochrone for the centrifugal force of inertia. A time functional in the
polar coordinate system has been built and the corresponding Euler equation has been recorded,; its first integral has been obtained,
an analytic solution for the integral has been found. It has been ascertained that its structure depends on the boundary conditions. Ex-
amples of calculations of optimal trajectories have been provided; the blade of the groundthrower with brachistochrone profile has

been built.
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Introduction. When creating some technical (technologi-
cal) devices there is the problem of choosing an optimal
form of guides in which some particles move (e.g. ground
ones) under pressure of centrifugal forces of inertia. In
particular, the actual problem is the creation of ground-
thrower mechanisms to be used for extinguishing fires in
areas where there is a lack of water sources. Similar
mechanisms are used in road, agricultural machinery etc.
Rotary groundthrowers have a number of advantages as
they throw ground using blades located on the rotating ro-
tor. Methods for selecting form, position of blades, analy-
sis of motion of soil particles on them are currently not
enough developed. Researches on the issues resolution
that are aimed at improve technological characteristics of
the devices are relevant.

The task of choosing the optimal blade profile can be
schematized as a problem of determining the shape of a
curve in the field of centrifugal forces of inertia, which
provides the minimum motion time of a particle (the
problem of the brachistochrone for the centrifugal force).

It is known that the classical problem of the brachisto-
chrone for uniform field strength of gravity was the start-
ing point for the creation of the calculus of variations [3].
Salvations of similar problems for some types of centrifu-
gal forces are given in [1]. Questions about constructing
an optimal trajectory of the point in the field of centrifu-
gal forces of inertia are reviewed in an article [4].

In this paper, we propose a method for solving the
problem of the brachistochrone for a central force, which
is the centrifugal force of inertia. Functional time built in
the polar coordinate system. For the corresponding Euler
equation obtained his first integral in the form of first or-
der differential equation. An analytical solution of this
equation. It has been established that its structure depends
on the boundary conditions. Results of calculations of op-
timal trajectories constructed blade profile brachisto-
chrone.

1. Building the time functional. Let the points A and
B are located in the central field of repulsive forces — cen-
trifugal forces of inertia. Let’s draw a plane through the
points A and B and the center repulsion point O (Fig. 1).
Consider the curves joining these points located on the
plane. We choose from these curves such that a material

point A at a speedV, =0 of opening by moving only un-
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der the influence of centrifugal force reaches the point B
in the minimum time. Solution of the problem and the
conclusion of the functional movement time conveniently
carried out in the polar coordinate system centered at the
specified point. The current coordinates of the point M are
denoted as kak p and ¢ ; the coordinates of points, A and

B — respectively (po,(po) and (pl,(pl).

The projection of the centrifugal force of inertia of the
material point associated with the rotating body, the direc-
tion of the radius p has the form

F, =ma, =mo’p (1)

where m — the mass of the point; a, =w’p — axis-

directed (normal) acceleration; o —angular velocity.

Then the expression for the potential energy of the cen-
trifugal force of inertia can be represented as [2]:
i B

Fig. 1. Scheme for construction brachisto-
chrone in a centrifugal force field
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When writing the formula (2) it was assumed that the
initial position to determine the potential energy is a re-
pulsive center, in which the potential energy is zero.

In a coordinate system uniformly rotating around a
fixed axis, if we neglect the forces of friction and re-

©)|v. M. Shatohyn, 0. M. Semkiv, A. N. Popova 2013



holis.diana@gmail.com
Typewritten text
V. M. Shatohyn, O. M. Semkiv, A. N. Popova 2013


Science and Education a New Dimension: Natural and Technical Sciences, 1(2), Issue: 15, 2013  www.seanewdim.com

sistance, the law of conservation of energy in a relative
motion [2]
T+II=h=const, (3)

where T =%mv2—kinetic energy of a point in the

relative motion with respect to the rotating coordinate sys-
tem;

2
h= —me P& constant energy.

In the future, we believe that in the formula (3) it takes
into account only the potential energy of the centrifugal
force of inertia. From the point of view of applications,
that is the most important case. An angular velocity in
technological devices is such that the effect of gravita-
tional forces on the motion of a point slightly. In the anal-
ysis of movement on the horizontal plane of the reserva-
tion is generally unnecessary.

Now on the basis of (3) for the velocity point, we have

V=0yp’—ps (pZpy). (4)

From the definition of the algebraic value of velocity (a
projection of velocity on the tangent to the trajectory)

_ds

V=V, , the expression of the differential for the

square of the arc in polar coordinates ds? = dp? + p2dq?
and the formula (4) it follows that

%_ p'2+p2

Voot p?

dt= do, (5)

where p' = %

Note that when counting the arc in the direction of mo-
tion of the point differential path will coincide with the
differential of the arc coordinate ds and the point veloci-

ty module will coincide with its algebraic value v=Vv_.
Integrating, we are obtaining the functional

[ p(o)]= _[ =

2. Search functional extremum. For the integrand we
introduce the notation

s
Yot et

then on the curve realizing extremum of the considered
functional, the condition must be satisfied (this follows
from the necessary conditions for an extremum of the
functional (6) [3])

P, -

P=P(p,p)= (M)

d
P.=0, (8
do P (8)

where Pp , Pp

Thus, the desired function p = p((p) is the solution of

second order differential equation (Euler equation) (8) or
in expanded form

derivatives P respectively p and p'.
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Pp - Ppprp, - Pp/prp” = 0 y (9)
d?p

where p" =

After multiplying this equation term by term on its left-
hand side becomes an exact derivative

dd_(p(P - p,Pp')'

Consequently, the Euler equation has the first integral
o 1
From expression (10), after transformations, we obtain

dp C2p2
——=p.|——-1.(12)
\ (0® —p3)

do
Differential equation (11) admits an analytic solution
(cumbersome calculations are not presented here)

arctgz+l+C, c*=1,
z
1 2
p=1arctgz - —arctg o C°<l (12)
J1-c \/1 c
arctgz - — -1 |Z Ve |+C Cc?>1,
2\/c2—1 |z+\/C2—1|
2 2
where z = CZ: p >—1.(13)
~Po

Boundary conditions for finding of permanent C and
C, taking into account (13):

— _ C?p; .
a8 Q=Qg, pP=py; 2=2(py) =2, =,/ 2_1=oo,(14)
Po —Po

C’pl

p;

as Q=0;, p=py, 2=2(p) =2 = > —1.(15)

—Po
The greatest interest for practice is in the cases where

C?<1 and C?>1. Here we are considering the condi-
tions (14), (15) and constructing the transcendental equa-

tion for the C?2 in the first case

Xpi g
2 1 Pf—PS 1 In
f(x —arct arct +1- ==0
(X)=9, g\l X po T—x g T—x G ( 1—Xj2

(16)
where x=C?.
After that C, is determined by the boundary condi-
1

==

Point values of the constants C and C, using the se-

tions provided

C, = [1 z. (17)

2

cond formula in (12) and the formula (13) allow us to
write the following expression for the unknown function
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C%* _
C¥p? 1 P’ —pg
o(p) =arctg -1-
pP=pg  1-C? Ji-¢?
Examples constructed using the method developed
brachistochrone are shown in Fig. 2 (p, =0,496mMm,

1

arctg +C,- (18)

p,;=0,632m, ¢, =0, @, =20"). Fig. 2a shows, ob-

tained by (18), a schedule convenient for analysis of the
inverse functionp=p(p). Fig. 2b this dependence
graphs are constructed in the polar coordinate system for

angles ¢, multiple to 20°, and for p, there were under-

taken the minimum limit values p,, which still provide

Iz

0.55 /

the opportunity to build solutions using the second formu-

la (12) (C% <1).

3. Formation of the blade profile brachistochrone.
Fig. 3 shows groundthrower scheme: 1 — hub, 2 —ring, 3
— spoke 4 — curved blade. It is assumed that the thrower
rotates with angular velocity o upstream clockwise. And

radii R, and R,are the radii of a circle passing through

the back and the front edge of the blade. In the above the-
ory, they correspond to the polar radii p, and p,. The
curved blade with a profile in the form of brachistochrone
(see Fig. 2) is shown in Fig. 4. When forming the side
walls of said blade also used brachistochrone. Protruding
portions of the side walls can serve as a kind of disinte-
grating agents, facilitating the introduction of the blade
into the ground.

0.5

a)

Fig. 2. Function graphics p(¢) (9, =0, p; =0,632m):

a) - po =0,496Mm, ¢, = 20" b) - pg—the minimum limit values

Research results allowed us to establish a number of
fundamental advantages curved blade connected with the
fact that such a blade embedded in the ground at a more
acute angle than straightforward: a larger volume of the

Fig. 3. Scheme of the groundthrower mech-
anism

captured ground, less effort in the implementation of
smaller dynamic loads on the blades and rotor, lower
power of drive motor.
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Fig. 4. Blade with brachistochrone
profile
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Conclusion

1.1t has been developed a method for solving the 4. It has been he determined the dependence of the
problem of the brachistochrone for the centrifugal force of  mathematical description of the optimal trajectories on the
inertia. values coorinates of the starting and ending points.

2. It has been built the time functional in the polar 5. The results of calculations of optimal trajectories
coordinate system. have been displayed.

3. It has been obtained the first integral of the Euler 6. Built groundthrower blade with brachistochrone

equation in the form of first order differential equation  profile has been built.
and found its analytical solution.
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IlaTtoxun B.M., Cemkus O.M., Ilonosa A.H. OnTtumManbHblii NpoduIb JONATKH I'PYHTOMeTAaTeIs KAK pelleHUe 3aJa4u 0
OpaxHuCTOXpPOHe ISl HEeHTPOOEe:KHOM CHIIbI HHEPLUH
AnHoTanmus. 310xeH MeTox Hax0)KAeHHsT OPaXxUCTOXPOHBI JUIsl IEHTPOOSKHOH cHitbl nHepLuHd. [locTpoeH (HyHKINOHAT BpEeMEHH B
MOJIPHON CHCTeMe KOOPAHMHAT U 3allNCaHO COOTBETCTBYIOIEE ypaBHEHHE Diiepa; MOIydeH ero MepBbI MHTErpai, Al KOTOPOro
HalJIeHO AHAJIUTUYECKOE pEUIeHHE. YCTAHOBJIEHO, YTO €ro CTPYKTypa 3aBUCHUT OT KpaeBbIX ycinoBuid. [IpuBeneHbl mpumepbl
pacdeToB ONTHMAIbHBIX TPACKTOPHUIL, ITOCTPOEHA JIONAaTKa IPYHTOMETATENs ¢ MPohHIeM OpaXHCTOXPOHEL.

Kniouesvie cnosa: 6paxucmoxpona, yenmpobedcnas cuna unepyuu, GyHKYUoHan, noisaphvie KoOpounamel, ypasrenue Jiliepa,
ONMUMATLHBLI NPOPUIL TONAMKU.
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