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Abstract. It has been described a method for finding the brachistochrone for the centrifugal force of inertia. A time functional in the 

polar coordinate system has been built and the corresponding Euler equation has been recorded; its first integral has been obtained, 

an analytic solution for the integral has been found. It has been ascertained that its structure depends on the boundary conditions. Ex-

amples of calculations of optimal trajectories have been provided; the blade of the groundthrower with brachistochrone profile has 

been built. 
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Introduction. When creating some technical (technologi-

cal) devices there is the problem of choosing an optimal 

form of guides in which some particles move (e.g. ground 

ones) under pressure of centrifugal forces of inertia. In 

particular, the actual problem is the creation of ground-

thrower mechanisms to be used for extinguishing fires in 

areas where there is a lack of water sources. Similar 

mechanisms are used in road, agricultural machinery etc. 

Rotary groundthrowers have a number of advantages as 

they throw ground using blades located on the rotating ro-

tor. Methods for selecting form, position of blades, analy-

sis of motion of soil particles on them are currently not 

enough developed. Researches on the issues resolution 

that are aimed at improve technological characteristics of 

the devices are relevant. 

The task of choosing the optimal blade profile can be 

schematized as a problem of determining the shape of a 

curve in the field of centrifugal forces of inertia, which 

provides the minimum motion time of a particle (the 

problem of the brachistochrone for the centrifugal force). 

It is known that the classical problem of the brachisto-

chrone for uniform field strength of gravity was the start-

ing point for the creation of the calculus of variations [3]. 

Salvations of similar problems for some types of centrifu-

gal forces are given in [1]. Questions about constructing 

an optimal trajectory of the point in the field of centrifu-

gal forces of inertia are reviewed in an article [4]. 

In this paper, we propose a method for solving the 

problem of the brachistochrone for a central force, which 

is the centrifugal force of inertia. Functional time built in 

the polar coordinate system. For the corresponding Euler 

equation obtained his first integral in the form of first or-

der differential equation. An analytical solution of this 

equation. It has been established that its structure depends 

on the boundary conditions. Results of calculations of op-

timal trajectories constructed blade profile brachisto-

chrone. 

1. Building the time functional. Let the points A and 

B are located in the central field of repulsive forces – cen-

trifugal forces of inertia. Let’s draw a plane through the 

points A and B and the center repulsion point O (Fig. 1). 

Consider the curves joining these points located on the 

plane. We choose from these curves such that a material 

point A at a speed 00 v  of opening by moving only un-

der the influence of centrifugal force reaches the point B 

in the minimum time. Solution of the problem and the 

conclusion of the functional movement time conveniently 

carried out in the polar coordinate system centered at the 

specified point. The current coordinates of the point M are 

denoted as как   and  ; the coordinates of points, A and 

B – respectively  00 ,  and  11, . 

The projection of the centrifugal force of inertia of the 

material point associated with the rotating body, the direc-

tion of the radius  has the form 

 
2mmaF  (1) 

where m – the mass of the point; 
2a  – axis-

directed (normal) acceleration;  –angular velocity. 

Then the expression for the potential energy of the cen-

trifugal force of inertia can be represented as [2]: 

 

2
2

0

2
 




mdF . (2) 

When writing the formula (2) it was assumed that the 

initial position to determine the potential energy is a re-

pulsive center, in which the potential energy is zero. 

In a coordinate system uniformly rotating around a 

fixed axis, if we neglect the forces of friction and re-

Fig. 1. Scheme for construction brachisto-

chrone in a centrifugal force field 
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sistance, the law of conservation of energy in a relative 

motion [2] 

consthT  , (3) 

where 
2

2

1 mvT  – kinetic energy of a point in the 

relative motion with respect to the rotating coordinate sys-

tem; 

2
0

2

2
 mh – constant energy. 

In the future, we believe that in the formula (3) it takes 

into account only the potential energy of the centrifugal 

force of inertia. From the point of view of applications, 

that is the most important case. An angular velocity in 

technological devices is such that the effect of gravita-

tional forces on the motion of a point slightly. In the anal-

ysis of movement on the horizontal plane of the reserva-

tion is generally unnecessary. 

Now on the basis of (3) for the velocity point, we have 

2
0

2 v  ( 0 ). (4) 

From the definition of the algebraic value of velocity (a 

projection of velocity on the tangent to the trajectory)

dt

dsvv   , the expression of the differential for the 

square of the arc in polar coordinates 
2222  ddds  

and the formula (4) it follows that 





 d

v

dsdt
2
0

2

22

, (5) 

where 





d

d
. 

Note that when counting the arc in the direction of mo-

tion of the point differential path will coincide with the 

differential of the arc coordinate ds  and the point veloci-

ty module will coincide with its algebraic value  vv . 

Integrating, we are obtaining the functional 

   












1

0

2
0

2

22
1 d . (6) 

2. Search functional extremum. For the integrand we 

introduce the notation 

 

 
2
0

2

22

,



 PP , (7) 

then on the curve realizing extremum of the considered 

functional, the condition must be satisfied (this follows 

from the necessary conditions for an extremum of the 

functional (6) [3]) 

0


  P
d

dP , (8) 

where P , P – derivatives P  respectively   and  . 

Thus, the desired function    is the solution of 

second order differential equation (Euler equation) (8) or 

in expanded form 

0  PPP , (9) 

where 
2

2






d

d
. 

After multiplying this equation term by term on its left-

hand side becomes an exact derivative 

 


PP
d

d
. 

Consequently, the Euler equation has the first integral 

C
PP 1  . (10) 

From expression (10), after transformations, we obtain 

1
)( 2

0
2

22


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




 C

d

d
. (11) 

Differential equation (11) admits an analytic solution 

(cumbersome calculations are not presented here) 
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 (12) 

 

where 1
2
0

2

22







C
z . (13) 

Boundary conditions for finding of permanent C  and 

1C  taking into account (13): 

as 0 , 0 , 



 1)(

2
0

2
0

2
0

2

00

C
zzz ; (14) 

as 1 , 1 , 1)(
2
0

2
1

2
1

2

11 



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C
zzz . (15) 

The greatest interest for practice is in the cases where 

12 C  and 12 C . Here we are considering the condi-

tions (14), (15) and constructing the transcendental equa-

tion for the 
2C  in the first case 
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where 
2Cx  . 

After that 1C  is determined by the boundary condi-

tions provided 

21

11
2

01

















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C
C . (17) 

Point values of the constants C  and 1C  using the se-

cond formula in (12) and the formula (13) allow us to 

write the following expression for the unknown function 
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
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Examples constructed using the method developed 

brachistochrone are shown in Fig. 2 ( м496,00  , 

м632,01  , 00  , 
 201 ). Fig. 2a shows, ob-

tained by (18), a schedule convenient for analysis of the 

inverse function )( . Fig. 2b this dependence 

graphs are constructed in the polar coordinate system for 

angles 1  multiple to 
20 , and for 0  there were under-

taken the minimum limit values 
0 , which still provide 

the opportunity to build solutions using the second formu-

la (12) ( 12 C ). 

3. Formation of the blade profile brachistochrone. 

Fig. 3 shows groundthrower scheme: 1 – hub, 2 – ring, 3 

– spoke 4 – curved blade. It is assumed that the thrower 

rotates with angular velocity   upstream clockwise. And 

radii 1R  and 2R are the radii of a circle passing through 

the back and the front edge of the blade. In the above the-

ory, they correspond to the polar radii 0  and 1 . The 

curved blade with a profile in the form of brachistochrone 

(see Fig. 2) is shown in Fig. 4. When forming the side 

walls of said blade also used brachistochrone. Protruding 

portions of the side walls can serve as a kind of disinte-

grating agents, facilitating the introduction of the blade 

into the ground. 

 
Research results allowed us to establish a number of 

fundamental advantages curved blade connected with the 

fact that such a blade embedded in the ground at a more 

acute angle than straightforward: a larger volume of the 

captured ground, less effort in the implementation of 

smaller dynamic loads on the blades and rotor, lower 

power of drive motor. 

 

  

Fig. 2. Function graphics )(  ( 00  , м632,01  ): 

 a) – м496,00  , 
 201 ; b) – 

0 – the minimum limit values 
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Fig. 3. Scheme of the groundthrower mech-
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Fig. 4. Blade with brachistochrone 

profile 

 

ZT

 

 

 

9393



Science and Education a New Dimension: Natural and Technical Sciences, I(2), Issue: 15, 2013  www.seanewdim.com 

 
Conclusion 

1. It has been developed a method for solving the 

problem of the brachistochrone for the centrifugal force of 

inertia.  

2. It has been built the time functional in the polar 

coordinate system.  

3. It has been obtained the first integral of the Euler 

equation in the form of first order differential equation 

and found its analytical solution.  

 

4. It has been he determined the dependence of the 

mathematical description of the optimal trajectories on the 

values coorinates of the starting and ending points.  

5. The results of calculations of optimal trajectories 

have been displayed.  

6. Built groundthrower blade with brachistochrone 

profile has been built. 
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Шатохин В.М., Семкив О.М., Попова А.Н. Оптимальный профиль лопатки грунтометателя как решение задачи о 

брахистохроне для центробежной силы инерции 

Аннотация. Изложен метод нахождения брахистохроны для центробежной силы инерции. Построен функционал времени в 

полярной системе координат и записано соответствующее уравнение Эйлера; получен его первый интеграл, для которого 

найдено аналитическое решение. Установлено, что его структура зависит от краевых условий. Приведены примеры 

расчетов оптимальных траекторий, построена лопатка грунтометателя с профилем брахистохроны. 

Ключевые слова: брахистохрона, центробежная сила инерции, функционал, полярные координаты, уравнение Эйлера, 

оптимальный профиль лопатки. 
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